THE PENNSYLVANIA STATE UNIVERSITY

CROCKER WEST BUILDING

STATE COLLEGE, PA

Senior Thesis Project Tech II: Pro-Con Structural Study of Alternate Floor Systems

Eric M. Foster Architectural Engineering Structural Option

Advisor: Dr. Linda M. Hanagan

-- TABLE OF CONTENTS --

TABLE OF CONTENTS	
EXECUTIVE SUMMARY	
STRUCTURAL SYSTEM	
FOUNDATION(S):	
COLUMNS:	6
FLOOR SYSTEM:	7
ROOF SYSTEM:	7
LATERAL SYSTEM:	
STRENGTH OF MATERIALS	
MODEL CODES	
DESIGN LOADS:	10
ALTERNATIVE FLOOR SYSTEMS	
<i>I</i> , TWO-WAY FLAT PLATE:	
11. POST-TENSIONED TWO-WAY SLAB:	
111. COMPOSITE BEAMS W/ METAL DECK:	
PRO-CON SUMMARY	
CONCLUSIONS	
APPENDIX A	
(Project Drawings)	19
APPENDIX B	
(CALCULATIONS, RESULTS, & REFERENCES)	
END OF REPORT	

-- EXECUTIVE SUMMARY --

Structural Tech Report II is geared towards a comparison report between the existing floor system of the Crocker West Building and three selected alternative floor systems. All floor systems will be assessed using, but not limited to, criteria such as: cost, serviceability, fire-rating and deflection in order to better understand the existing floor elements and establish realistic alternative floor system designs.

Tech II consists of a preliminary study for a 2nd Floor Level, 35' x 35' typical interior bay floor system. The interior bay was chosen based on the original framing plan of the structure containing no columns along the exterior perimeter, and the 2nd Floor Level was selected for design purposes due to the relatively high loading conditions. The existing floor system is designed using prestressed, precast hollow-core slabs with a typical two inch topping supported by inverted-tee (IT) beams that bear on column corbels, see Figure #4 in Structural Systems section below. Although specific height restrictions for floor levels were not required during preliminary design, the existing system still utilized minimum floor depths in order to achieve maximum floor-to-finished ceiling height. Due to this, it may be valuable to investigate alternative floor framing systems. Tech II will examine the following types of alternative solutions:

- *i.* Two-Way Flat Slab Systems
- *ii.* Post-Tensioned Two-Way Slab System
- *iii.* Composite Beams with Metal Decking Systems(s)

Concluding the results found in preliminary analyses of the alternative floor systems, it appears as though the composite beams with metal deck and post-tensioned (PT) slab would be the most practical selections for advanced research. A composite floor system allows for quick erection time and limits design criteria such as deflection and vibration over the long span. The PT slab will be further researched simply due to its ability to allow for shallower floor cavities with respect to longer spans. The thinner floor diaphragms will reduce the total weight of the building and lower the overall height of the structure. Based on the geotechnical report for this project, the weight of the structure is of little interest due to the soil capacity of the site and the amount of rock beneath. However, using the PT slab to aide the height of the structure could be of great importance due to a 45' height restriction implemented by Ferguson Township in State College, Pa. An in-depth design analysis of each floor system would be necessary to fully compare the impacts each design would have on other systems such as the foundation and lateral systems.

** Please note: Beam designs for the existing structure are not included within this report. Please reference Tech Report I (Appendix B) for Concise Summary Reports citing the ITbeam designs. Also, available upon request.

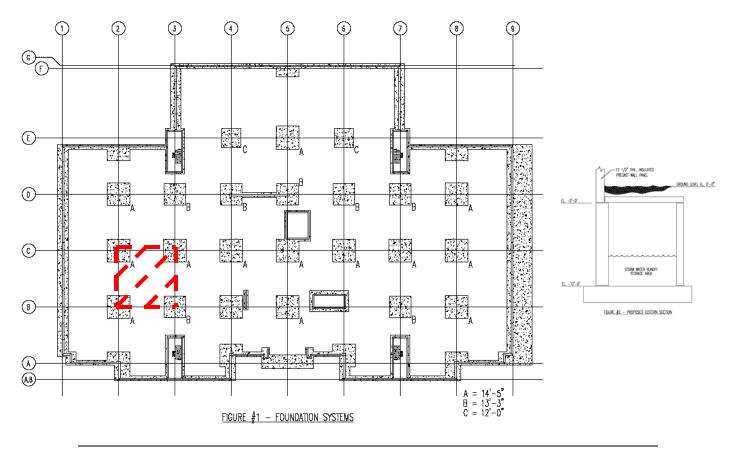
-- BUILDING INTRODUCTION --

Crocker West will be used as a highly classified research facility, specializing in the development and testing of underwater weapons for the U.S. Department of Defense. Located in State College, Pa, the structure will be a 3-story low-rise building with areas classified as office, light industrial, and warehouse totaling nearly 120,000 square feet. The first floor of the CWB will consist mainly of 'closed' lab area, along with technician offices, locker rooms and special test areas. The second floor will include office space, another lab area, computer lab, student room and a room designated to SCIF (Sensitive Compartmented Information Facility), while the third floor will be devoted mostly to office space. The entire building will be constructed of precast systems, including: columns, beams, walls, floor & roof diaphragms. Lateral loads applied to the structure will be collectively distributed throughout the building to specially designed shear walls.

Please note that Appendix A at the end of this report contains drawings of the project for reference, while Appendix B consists of hand calculations and other data used in designing and comparing the alternative floor systems for the Crocker West Building. The following page consists of a plan drawing of a typical bay (designated by hatch) analyzed throughout this report.

-- DESIGN CRITERIA --

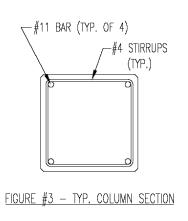
DEFLECTION:	Limit
Live Load Deflection	L / 360
Total Deflection	L / 240


**Please note that vibration criteria were not considered in the analysis and design of the alternative (or existing) floor systems. This is partially due to the amount of employees that will be employed in the building, approximately 180, thus high levels of vibration assumed to not occur. Also, the occupant did not address any concern about this issue.

-- STRUCTURAL SYSTEM --

As stated above, CWB is a total precast building. The following are detailed explanations of the individual precast members and systems.

FOUNDATION(S):


The foundation system(s) being implemented consists of typical cast-in-place (CIP) strip and pad footings, as well as a standard CIP slab-on-grade. Fifteen inch deep strip footings ranging from 3'-3" to 6'-6" wide are used along the perimeter of the structure. These footings help distribute wall panel loads to the ground. Additionally, the East walls strip footing of the structure will also be used as a part of the underground water cistern that will be used to collect treatable storm water runoff for reuse. Spread (or Pad) footings will be used throughout the interior portion of the building and will be used to pick up loads from columns and stair-towers. Pads used under columns vary in size from 12' square to 14'-5 square, while pads under the four typical stair-towers are 12'-0 x 25'-6. All pad footings are 2 foot thick unless noted otherwise. A six inch thick slab-on-grade reinforced with W4.0 x W4.0 WWF will complete the foundation system(s) and will be used as the ground floor level of the building. See Figures #1 and #2 below for a plan view of the foundation systems and proposed cistern detail, respectively. Please note, the width of the cistern was unavailable at this time.

PAGE 5 OF 68

COLUMNS:

The vertical supporting members for the entire structure are reinforced, precast concrete columns. All columns are 24" x 24" square columns with four (4) #11 longitudinal reinforcing bars and #4 stirrups spaced accordingly (See Figure #3). Columns will be cast for lengths up to 42 feet. Each column will contain haunches and haunch reinforcing (Figure #4) cast monolithically at each floor level, and in the required position for beam bearing and load transfer. The columns are spaced on a 35'-0 x 35'-0 typical bay grid and are connected to the pad footings with four (4) 1 ¼" dia. ASTM A193 threaded rods. See Figure #5 for column grid layout.

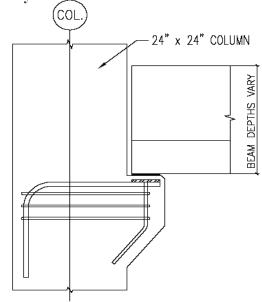
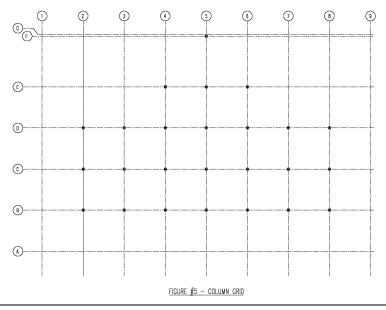
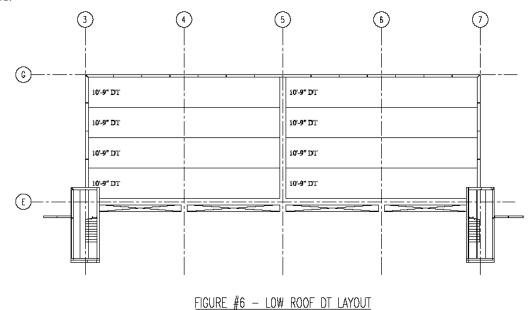



FIGURE #4 - COLUMN w/ HAUNCH

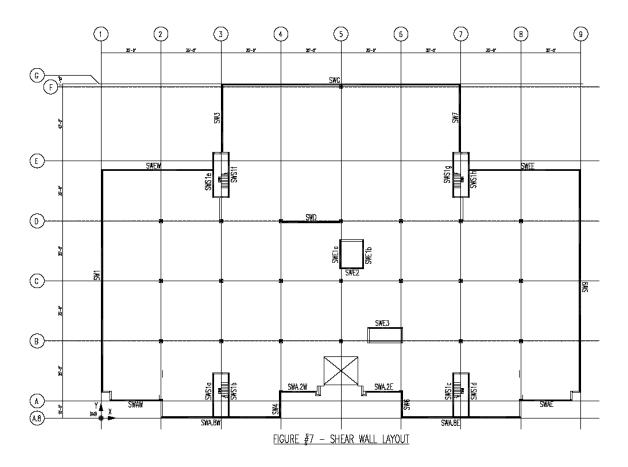
PAGE 6 OF 68


FLOOR SYSTEM:

As previously stated, the 1st Floor (or Ground Level) floor system is a 6" thick slab-on-grade with W4.0 x W4.0 WWF reinforcing. The remaining floor levels are constructed of precast, prestressed hollow-core flat slabs. The 2nd Floor Level will consist of 12 inch and the 3rd Floor Level will be comprised of 10 inch hollow-core flat slabs, each with six (6) 7-wire, ¹/₄" dia. 270 ksi low-relaxation prestressing strands and a typical 2" topping. Some of the hollow-core floor system clear spans are nearly 33'-0, with individual panels running in an East-West direction. See drawings in Appendix A for hollow-core panel layout.

Furthermore, these hollow-core slabs are supported by one of two methods. If the floor slab is to bear at an exterior wall panel location, a specially designed bearing ledge will be cast into the precast wall panel with proper reinforcing. For interior bay supports, the hollow-core slabs will be supported by precast, prestressed concrete inverted-tee (IT) beams. IT beams for the 2nd Floor were designed to be 28" deep, while 3rd Floor beams are 20" deep due to dissimilar live loads. See Appendix A for typical IT Beam sections.

ROOF SYSTEM:


The roofing system for the Crocker West Building main roof will be constructed by means of similar materials used in erecting floors two and three. The main roof will consist of 8" hollow-core flat slabs with (7) 7-wire, $\frac{1}{4}$ " dia. 270 ksi low-relaxation strands supported by 18" deep inverted-tee beams. The low roof, located in the rear storage area of the building, will be constructed of 10'-9 wide x 24" deep precast concrete double-tees (See Figure #6). In addition, each roof will receive a layer of 4" tapered rigid insulation and a 60 mil EPDM roofing membrane rather than a 2" topping which is not needed on the roof.

PAGE 7 OF 68

LATERAL SYSTEM:

One of the key design issues of a total precast structure is the make up of the lateral force resistance system. Crocker West is no different; its lateral system was designed using a compilation of precast shear walls positioned around the perimeter and throughout the building. These precast shear walls are constructed with several different thicknesses of insulated and non-insulated precast panels. Exterior wall panels (all insulated) acting as shear walls in the N-S direction are 12 $\frac{1}{2}$ thick, while E-W direction walls are 9 $\frac{1}{2}$ thick. Shear walls located on the interior of the structure and around stair-towers are 9 thick and non-insulated. Due to the fact that every panel is individually erected, specially designed connections are required for each piece. These connections, not specified in this tech report, are designed to ensure the applied load is safely distributed to the lateral system. Figure #7 below illustrates the layout of the shear walls; each represented by a solid line with a SW designation. Also, typical Wall Sections may be found in Appendix A.

-- STRENGTH OF MATERIALS --

EXISTING:		
CAST-IN-PLACE CONCRETE:	<u> f`c </u>	
Slab-on-Grade	4000 psi	
PRECAST CONCRETE:	fe	<u>f'ci</u>
Columns Beams Hollow-Core Slabs Wall Panels	6000 psi 6000 psi 6000 psi 6000 psi	3500 psi for ALL
REINFORCING STEEL:	fy	
Reinforcing Bars Stirrups WWF	60000 psi 60000 psi 60000 psi	
PRESTRESSING STRANDS:	<u>fps</u>	$\mathbf{E}_{\mathbf{s}}$
¹ / ₂ " Special (7-Wire) strands	270 ksi	28 000 psi

ALTERNATIVE(S):

**Please see individual floor design calculations included in Appendix B of this report.

-- MODEL CODES --

The following codes listed were used in the original design, as well as any and all analysis performed for this tech report.

BUILDING CODES: International Building Code (IBC)		IBC 2006
CONCRETE CODES:		ACI 318-05
American Concrete Institute (ACI) - Building Code Requirements for St	tructura] Concrete	AUI 316-03
- Dunung coue nequirements for St		
Precast/Prestressed Concrete Institut	te (PCI)	6 th Edition
- PCI Design Handbook, Precast and		
LATERAL LOADS & DESIGN LOADS:		
American Society of Civil Engineers		ASCE 7-05
- Minimum Design Loads for Build	ings and Other Structures	
IBC		IBC 2006
STEEL DESIGN:		
American Institute of Steel Construc	ction Manual (AISC)	13 th Edition
DESIGN LOADS:	LOADG	
	LOADS	
	<u>DESIGN</u>	<u>ASCE 7-05</u>
Lobby / 1 st Floor Corridors Corridors above 1 st Floor	*a 90 105 maf *h	100 psf
	80-125 psf *b	80 psf 50 msf
Offices	80-125 psf * b	50 psf
Ordinary Flat Roof	20 psf	20 psf
Stairs / Exits 175 psf		100 psf
Snow ($pf = 0.7*40$ psf = 28 psf)	40 psf	40 psf *c
* Notes:		
a. Lobby and 1 st Floor located at gro	und level which exceeds 100	nsf
		, hare

b. Design live loads differ from floor to floor.

 2^{nd} Floor = 125 psf 3^{rd} Floor = 80 psf

c. 40 psf Snow Load specified by Centre Region Code (See Appendix B)

DEAD LOADS

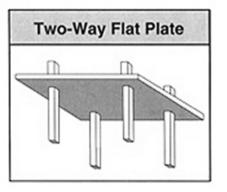
Dead load for structure includes self weight of individual precast members. See seismic analysis in Appendix B for detailed loads.

-- ALTERNATIVE FLOOR SYSTEMS --

i. TWO-WAY FLAT PLATE:

Material Properties:

f c = 5000 psi (NWC)


fy = 60000 psi

Loading:

Live Load = 125 psf (2nd Floor)

Dead Load = self wt. + 25 psf (superimposed)

Synopsis:

A two-way flat plate system is composed of a uniformly thick, concrete slab that is reinforced in both directions using conventional reinforcement. Flat plates are considerably economical in terms of reinforcement and formwork due to the simplicity of the system. Also, a flat plate system optimizes the depth of the floor plenum, ultimately resulting in minimum story heights.

Hand calculations were performed in the design of the flat plate system. A minimum slab thickness of one foot (t=12") was determined and found to be sufficient for strength and shear. Maintaining the original square column sizes of 24" x 24" it was determined that the column strip reinforcing required (29) #8's in the top and (12) #8's on the bottom, while the middle strip reinforcing required (10) #8's in the top and (8) #8's on the bottom. This reinforcing is required for each strip in each direction. See Flat Plate System hand calculations in Appendix B of this report for a schematic diagram of the reinforcing details (pg. 46).

PCA-Slab, a computer-based design program, was used to compare the design and estimate deflections. Appendix B contains output diagrams for two separate systems. The 1st & 2nd diagrams, on pages 48-49, depict estimated deflection and required reinforcing, respectively, of a two-way flat plate system equal to that designed by hand (max $\Delta = 1.3$ "). The 3rd diagram, on page 50, represents the deflection of a similar two-way system with beams (max $\Delta = 0.8$ "). Input for both PCA examples is available upon request.

Considerations:

<u>Structural</u> – The flat plate system allows for relatively long spans and a substantial lack of restrictions around columns and walls. Also, because the minimum thickness of the slab is 12", a fire-rating of two hours is over-achieved and no additional fire-proofing is required. However, due to the extensive live load assigned to this level of the structure and a clear span of nearly 35 feet, further analysis may inhibit the use of column drop panels and/or a thicker slab in order to reduce deflection in the diaphragm.

<u>Architectural</u> – The two-way system provides minimal floor plenum thickness and in turn can be used to reduce the overall height of the structure, or provide maximum floor-to-ceiling heights. Either face may be finished to combat a variety of floor and ceiling materials. In addition to the above, a flat plate system allows for a spacious column grid and thus a vast amount of open floor space.

<u>Construction/M.E.P.</u> – Crocker West utilizes a typical 35' x 35' bay throughout the entire structure, this will prove cost effective for things like formwork and reinforcing. However, a detailed analysis would have to be performed to extensively compare the costs associated with the large amount of reinforcing required to that of the repeating forms. The flat plate system also provides an abundance of space for the M.E.P. trades, allowing the individual systems to be smoothly coordinated and flexible. Conversely, a flat plate is constructed with cast-in-place (CIP) concrete which means longer construction schedule due to proper curing of the concrete.

Pro	Con
2-hr fire-rating (w/o add'l. fire-proofing)	heavily reinf. sections add weight & cost
long spans with thinner slab thickness	slowed erection time
open plan layout	deflections due to long span
	temp. & shrinkage issues while curing

PRO-CON TABLE

<u>Conclusion</u> – Although the two-way flat plate system provides the opportunity for a thinner floor plenum, I feel the additional weight of the structure and large deflections rule out this particular design for further investigation. The PCA example with beams may be a viable alternative, however the example was not as detailed and thus will not be pursued.

ii. POST-TENSIONED TWO-WAY SLAB:

Material Properties:

f'c = 5000 psi (NWC) fy = 60000 psi (Rebar) 0.6"Ø, 7-wire strands (fpu = 270 ksi)

Loading:

Live Load = 125 psf (2nd Floor)

Dead Load = self wt. + 25 psf (superimposed) + 13 psf (add'l. 1" concrete)

A post-tensioned (PT) floor system is constructed using the same methodology and materials as a flat plate system. A PT slab is also composed of a uniformly thick, concrete slab; however the reinforcing differs to that of a flat plate. A PT slab employs long strands of post-tensioning tendons spaced throughout the slab. After the slab is placed and allowed to cure to a required strength, the tendons are then pulled to a desired tensile limit. Once the concrete is fully cured, the tendons are cut, or released, and they induce a substantial compressive force into the slab. When loaded, these compression forces will work against the applied tensile forces distributed throughout the structure.

Based upon the preliminary analysis, it can be concluded that the PT slab system would be considered a practical solution to examine as an alternative. Due to limited experience designing PT slab systems, hand calculations halter in Appendix B after determining some of the service stresses are greater than the allowable. Assuming a span length to slab thickness ratio of 45 (L/h = 45), required a minimum slab thickness of 10". However, as previously stated, the 10" slab proved to be unsafe. The level of error associated with these stresses is sporadic. Some barely beyond the allowable, and others nearly doubled. A variety of construction options are available to avoid this setback. A thicker slab may be re-analyzed to try and increase the amount of stresses it may contain. Also, I feel that the addition of column capitals or drop panels to this system would greatly improve its performance.

As stated, Appendix B of this report contains hand calculations used for the PT slab design. Due to the error found, deflections where not taken into account for this particular design. Nevertheless, the two-way PT slab system is ideal for large spans and higher loads comparatively, and deflections would be minimal due to the compressive forces brought on by the tendons.

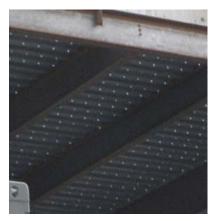
Considerations:

<u>Structural</u> – The post-tensioned system can be considered to be a 2-hr fire-rated system when the clear cover to the tendons is no less than 1.75 inches. Moreover, the 24" x 24" square concrete columns incorporated from the original design do not require any additional fire-proofing. Drop panels can be added to reduce slab thickness and column size if desired.

<u>Architectural</u> – The PT two-way system ultimately provides the least slab thickness required for the long spans. Shallower floor cavities will allow the structure to maintain the maximum 45' building height set by the township. *See previous flat plate system for more architectural considerations relating to a PT system.

<u>Construction/M.E.P.</u> – Similar to the Flat Plate system described earlier, the PT slab system will also be able to take advantage of the typical, repetitive bay layout. Even though its slightly more expensive due to the tendons and experienced construction team needed to place, a meticulous study of the system as a whole could prove to be more economical due to the symmetry & simplicity of the building. Worker safety is always an issue with a PT system as well. The high jacking force used to tension the tendons can have catastrophic circumstances if one of the tendons should slip or fail. Thus, a highly trained crew is needed for this potentially hazardous duty.

Pro	Con	
2-hr fire-rating (w/o add'l. fire-proofing)	worker safety	
least slab thickness	labor intensive tendon layout	
open plan layout temp. & shrinkage issues		
capable of long spans / high loads		


PRO-CON TABLE

<u>Conclusion</u> – Although I did not completely design the post-tensioned system in terms of deflections and ordinary reinforcement for shear, I feel this alternate floor system could prove to be very worthy with more research. Additional information would need to be gathered and analyzed in order to determine the effects this system would have on the lateral system.

iii. COMPOSITE BEAMS w/ METAL DECK:

Material Properties:

4 ½ " NWC Concrete Cover f c = 3000 psi (NWC) 3" USD Lok Floor Metal Deck (16 Gage) fy = 60000 psi Total slab depth of 7 ½" A992 Beams & Girders (fy = 50 ksi)

Loading:

Live Load = 125 psf (2nd Floor) Dead Load = self wt. + 25 psf (superimposed)

Synopsis:

The composite floor system analyzed for Tech II consists of a 4 ¹/₄" concrete slab placed on 3" metal deck for a total slab depth of 7 ¹/₄". Wide flange infill beams and girders support the 7 ¹/₄" slab while shear studs connected to the beams and girders help form a composite action between the steel and concrete, resulting in higher design strength. And finally, not included in this report, the entire floor diaphragm would be held in place by A992, W-shaped steel columns.

Preliminary analyses I performed, provided in Appendix B, will show that a typical interior steel bay framed with W30x90(120) girders and W21x55(48) infill beams provides adequate strength. The previous numbers in parenthesis represent the number of shear studs required for each beam. An online steel floor framing design program available on AISC's website (www.aisc.org) was then used to evaluate the preliminary design using similar conditions. The first study (pg. 66) was calculated using the same number of infill beams, resulting in a comparable bay design; differing slightly in the number of shear studs required. For the second analysis an additional infill beam was added (pg. 67), however it did not significantly affect the size of the members.

Further investigation into this particular system may be able to utilize partial composite action. See Appendix B for all calculations, results and references.

Considerations:

<u>Structural</u> – Composite floor systems are relatively effective for control of deflections over long spans with heavy loads, however this typically results in larger, unwanted diaphragm depths. Steel framing is very versatile and can effortlessly be integrated into the existing column grid. The slab and metal deck combination provide a 2-hr fire-rating, but additional fire-proofing would be required for the beams and girders.

<u>Architectural</u> – Being able to sustain considerable spans, the composite system makes available an open floor plan that is greatly welcomed in lab areas and research facilities like CWB. Proving effective structurally, the composite system still results in a floor plenum analogous to the existing system or slightly over. In the end, this could mean adjusting story heights and an overall taller building.

<u>Construction/M.E.P.</u> – Construction time allotted for composite floor systems is significantly less than concrete designs. Erection time for the steel is typically a fast and efficient process by means of proper delivery and erection sequencing. Also, formwork is not necessary for the slab due to the supporting metal deck. This will allow for a greater area of concrete to be poured continuously.

Pro	Con	
allots for construction sequencing	heavy steel sections	
fast erection time (no formwork)	total floor plenum depth	
cost effective / construction sequencing	fire-proofing req'd. for beam & girders	
capable of long spans / high loads		

PRO-CON TABLE

<u>Conclusion</u> – The composite steel framing system with slab on metal deck designed for this technical report resulted in a floor depth thicker than the other alternative floor systems. Still, I feel this system is of value based on the time of construction required and no floor-to-floor height restrictions. Additional information would need to be gathered and analyzed in order to determine the effects this system would have on the lateral system.

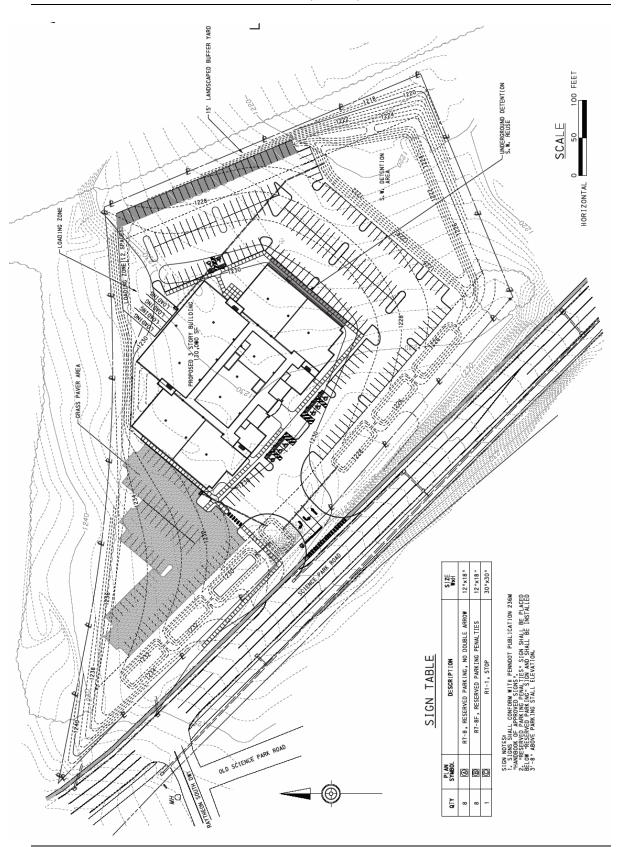
PRO-CON SUMMARY

	Existing System	Alternate No. 1	Alternate No. 2	Alternate No. 3
	Precast Hollow-Core Slabw/IT Beams	Two-Way Flat Plate System	Post-Tensioned Two-Way Slab	Composite Steel Framing w/Slab on Metal Deck
Grid Adjustment	(existing)	Reduction in spans may be necessary	\mathbf{D} rop panels required	None
Slab D epth	13" Precast Hollow-Core Plank	12" or greater	6" - 10" (Estimated)	4 1/3"
Plenum Depth for 2nd Floor Level	30"	12" or greater	N/A.	28" - 3 <i>6</i> " plus
Maximum Total Deflections	0.092"	0.8" - 1.3"	\mathbf{Low}	17"
Vibration	N/A.	N/A.	N/A.	N/A.
Additional Fire-Proofing	None Required	None Required	None Required	Apply to beams & girders
2-HR Fire-Rating	Achieved	Achieved	Achieved	Achieved pending inspection of additional fire-proofing
Formwork	No	Yes	Yes	No
Ease of Construction	E asy	Difficult	Difficult (Supervised)	E asy
Relative Cost	V er y H igh	Medium to High	Medium to High	Low to Medium
⊽alidity	(Existing)	Not at this time	Additional info. will be gathered & analyzed	Additional info. will be gathered & analyzed

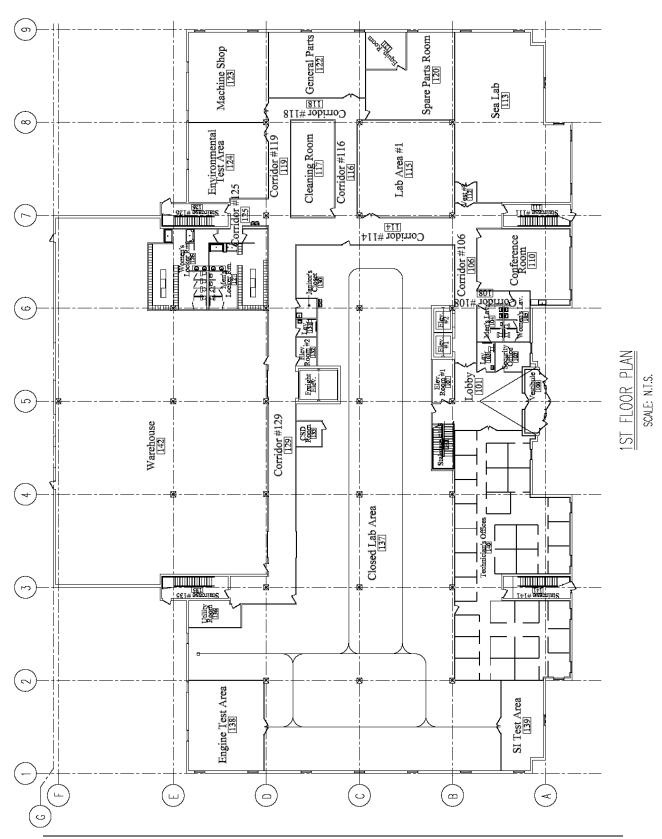
-- CONCLUSIONS --

The purpose of Tech II was to generate ideas and concerns related to preliminary schematic design of possible alternative floor systems for Crocker West . Three alternative systems were selected, analyzed, and then compared amongst each other and the existing system to determine the feasibility of each system within the structure. Prestressed, precast hollow-core slabs and IT-beams make up the existing floor system; while a two-way flat plate system, post-tensioned two-way slab system, and composite steel framing with slab on metal deck system were the selected alternatives to be examined.

Preliminary analyses of the alternate systems do not strictly rule out any particular system; however, several prove to be very viable and worthy of future research. It appears as though the PT slab and composite systems have the most potential of being an effective alternative. The PT slab will be examined to greater detail based on the fact that this system is capable of carrying higher loads distributed over long spans with respect to plenum depth. PT slabs allow for thinner, lighter floor diaphragms while creating open space throughout the floor plan. The composite floor system generates a much deeper floor cavity than any other system, yet will be considered based on the speed of erection and ability to fast track the project. Similar to the existing system, the framing members are manufactured off-site, shipped to the site, and then erected in a reasonably fast, sequential manner. Cost is another factor for consideration of the composite system. Making use of the two materials (steel & concrete) for tensile and compressive forces makes this system economical and efficient.


Although the two-way flat plate system was not chosen for in-depth study due to the extensive amount of reinforcing steel required, I feel a system similar to this could be validated and designed to work with this structure with a few manipulations of the existing plan. The required 35-foot spans lend themselves to concern of high deflections and unsafe conditions. Altering the column grid in order to reduce the clear spans is an option; however, this will reduce the amount of open space of the building.

Overall, I feel the existing prestressed system is one of the best choices for this project. Even though this is one of the most expensive systems, the hollow-core slabs and beams are very capable of spanning great distances with minimal deflection due to the majority of the members being cambered from the prestressing strands.

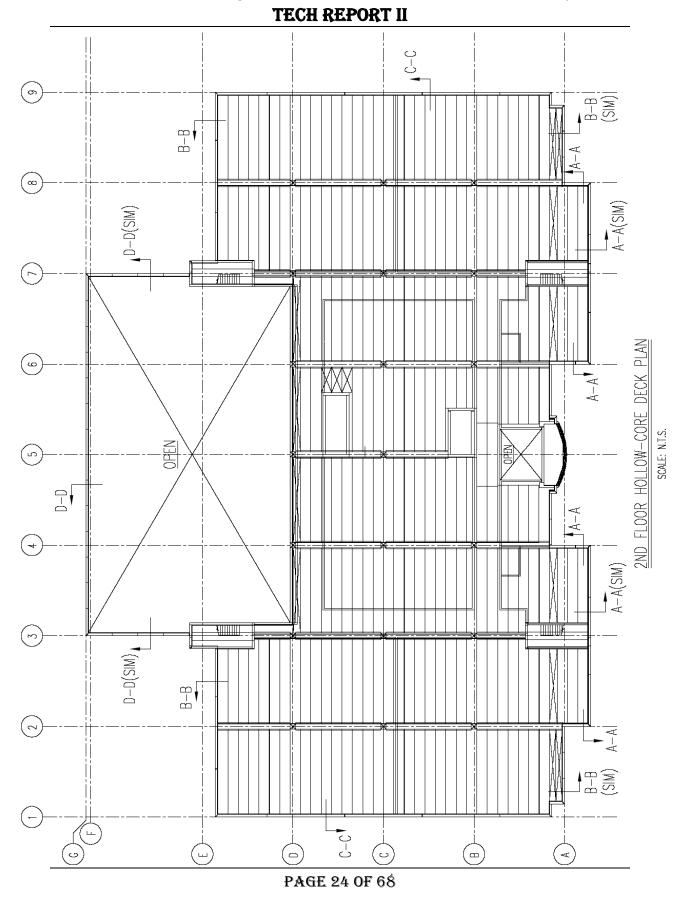

TECH REPORT II

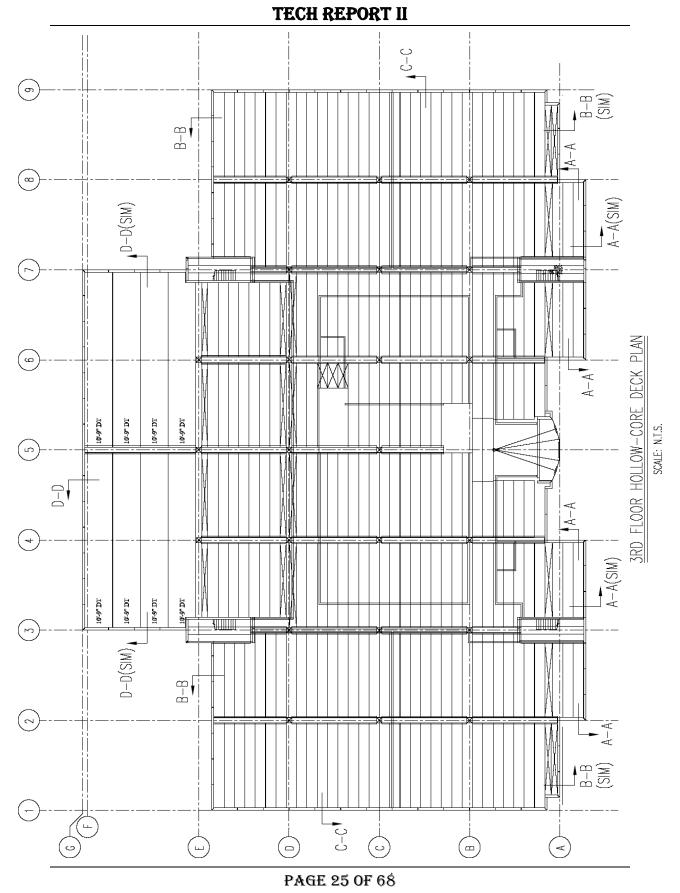
APPENDIX A

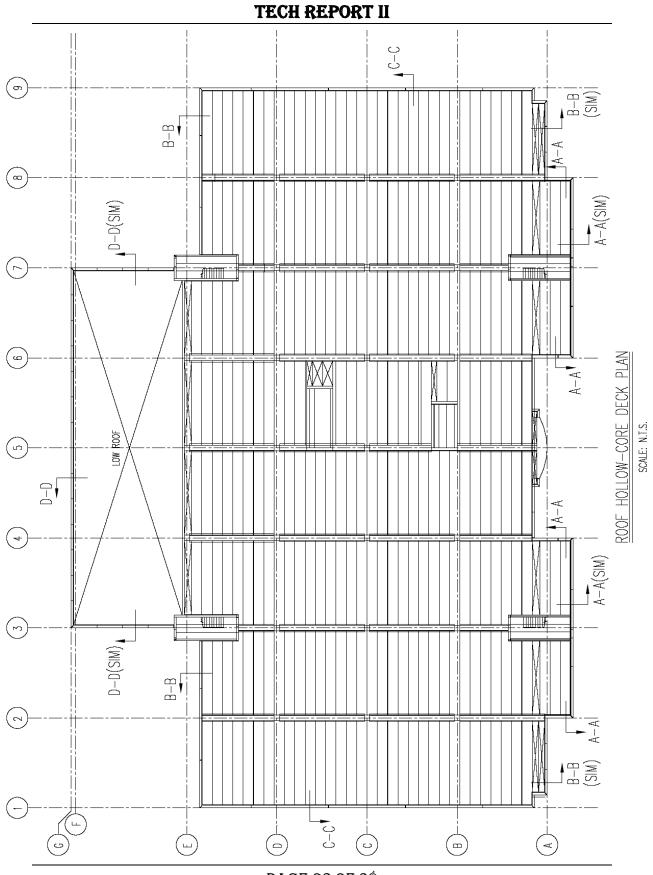
(Project Drawings)

PAGE 21 OF 68

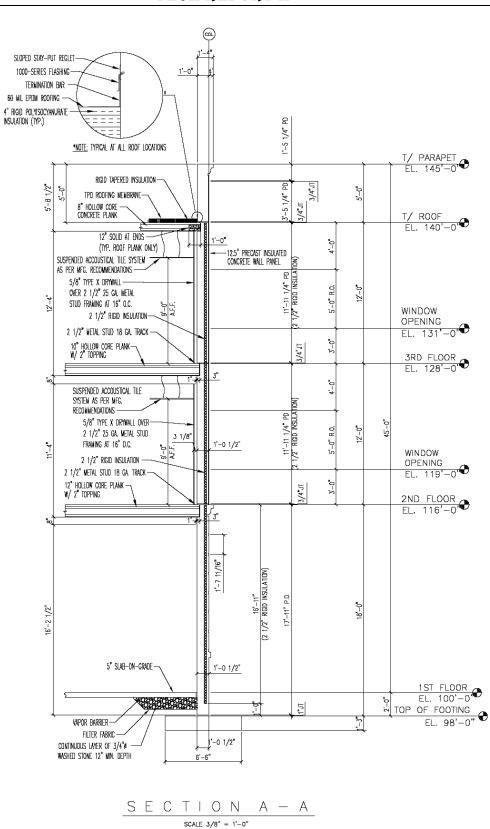
(တ kmfrrense km #213 (∞) Kitsheed D 203 Offices #207 Conference Rm #214 214 R^W216 Corridor # idor #2 suz Suz are a set of the set o r~~ Lab Area #2 227 影響 Corridor #201 201 Mezzanine [251] Office #202 202 SCIF 219 -Work Room (م) 888 Ξ 0000 Elev. 330 330 #520 라 라 라 라 K 2ND FLOOR PLAN Corridor #228 - F an, Closet 224 #200 Storage Freight Elev. SCALE: N.T.S. 286 co (ഹ Corrido Corridor # 797 0fffce#249 15ce #248 248 Network Room 250 Ece #247 Computer Room #246 Students #245 245 4 Corridor #244 244 Colyridor #242 Etyzel Statutes ~ 229 Corridor #231 200 Offices #232 Work 35 Conference Rm #233 [233] 240 (\sim) 216 236 m ں ≪_ O

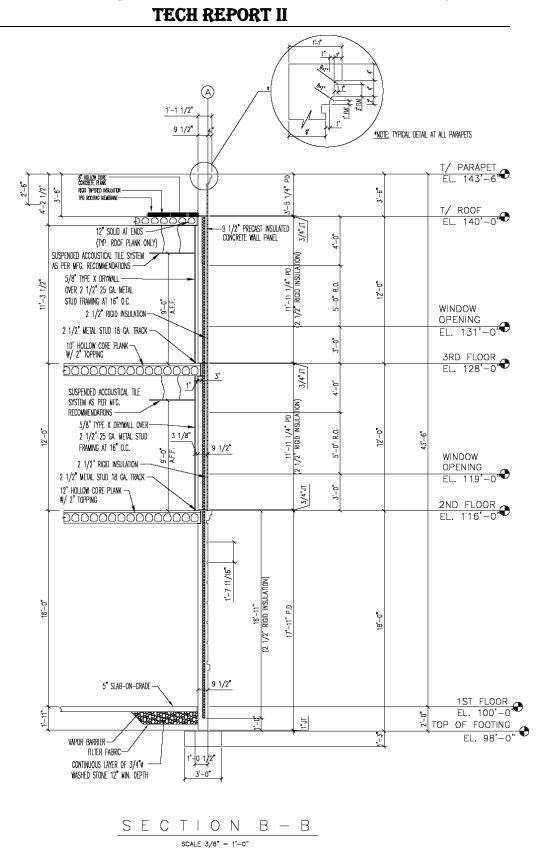

O

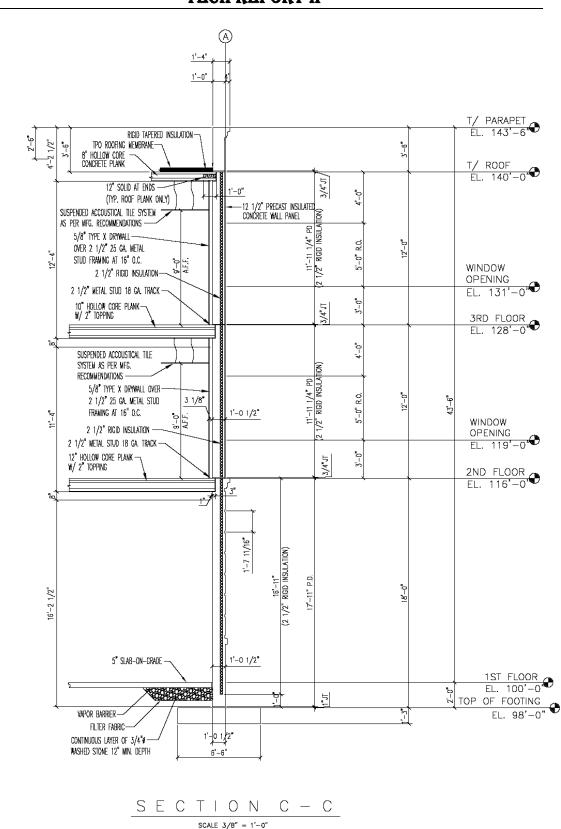

SCALE: N.T.S.


(တ Centry Control (∞) Future General Offices #317 Conference Rm #324 324 Ares 1326 5 Corridor #316 Corridor #3 Tallway OF D# 2510 UBIS SIE r~~ ШШ, 豒 234 234 234 General fffices #32 Display Area mferen m #33 G O Print Room (ဖ) Elev. 0000 Elev. 8258 8258 Kitt **3RD FLOOR PLAN** 1 Eloset Storage Freight Elev. 355 ഹ Corridor #363 Corridor #300 300 offices #387 Corridor #340 4 jeneral ices #344 [344] Break Room 339 #302 Conference Rm #345 [345] eption ≠ 302 習 #357 払 ridor # 3 dor 341 Corridor #343 000 1500 1500 General Offices #346 <u>г</u> Room 249 Conference Rm #348 348 0000 3334 354 (\sim) Conference Rm #350° ίų, m ں ≪

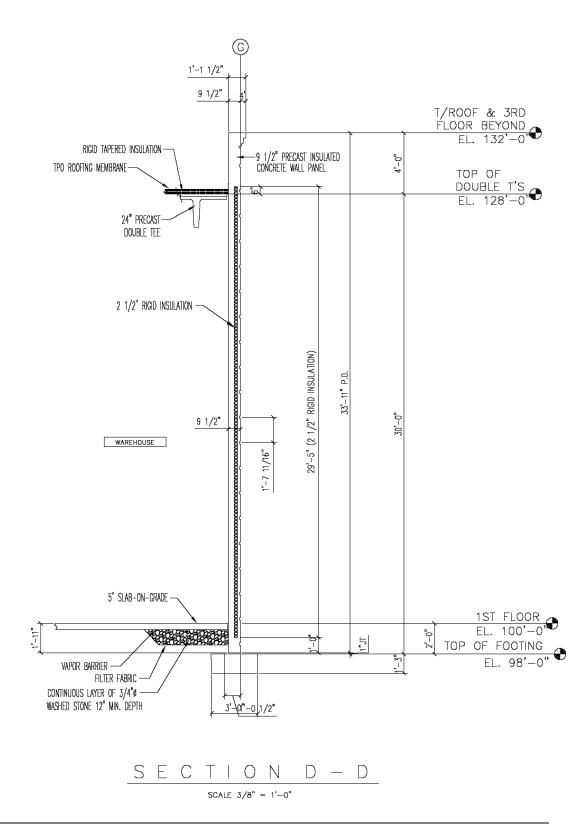
TECH REPORT II


PAGE 23 OF 68

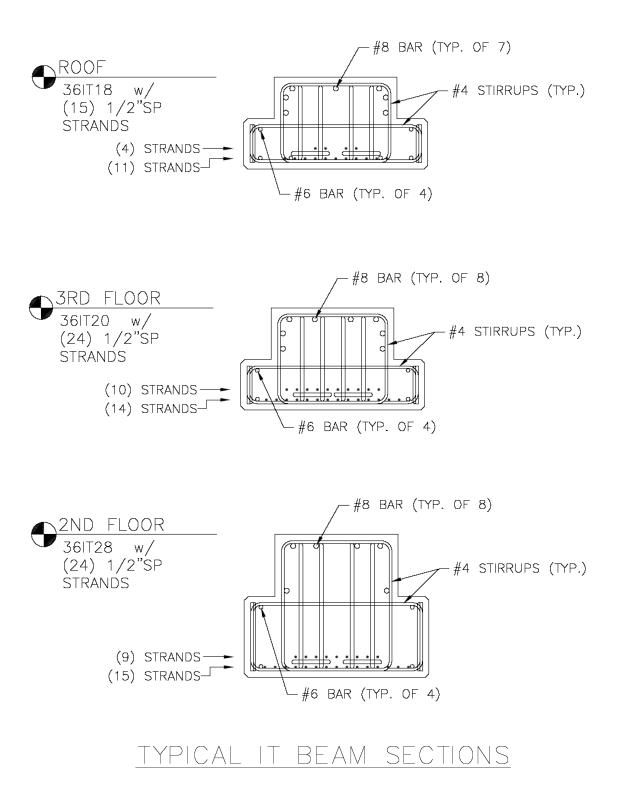




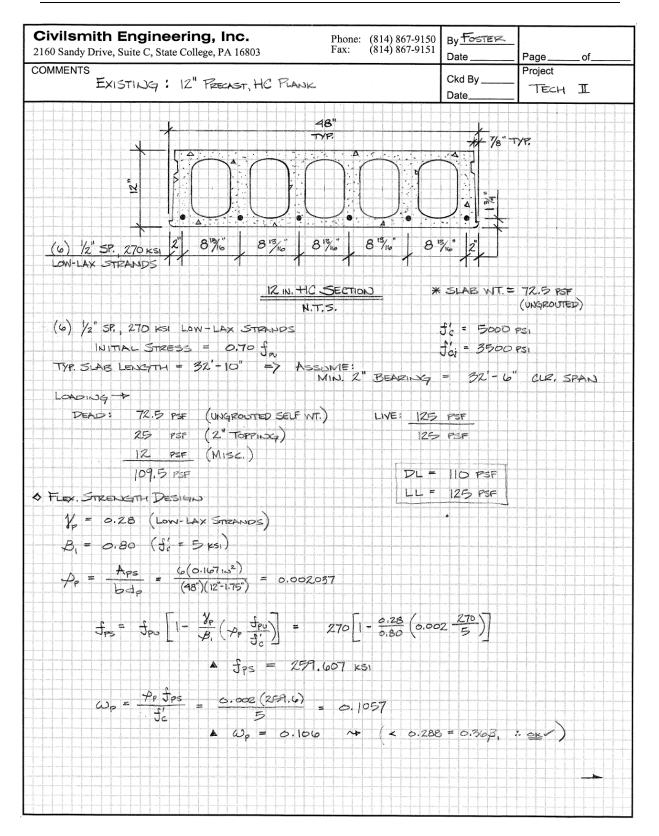
PAGE 26 OF 68

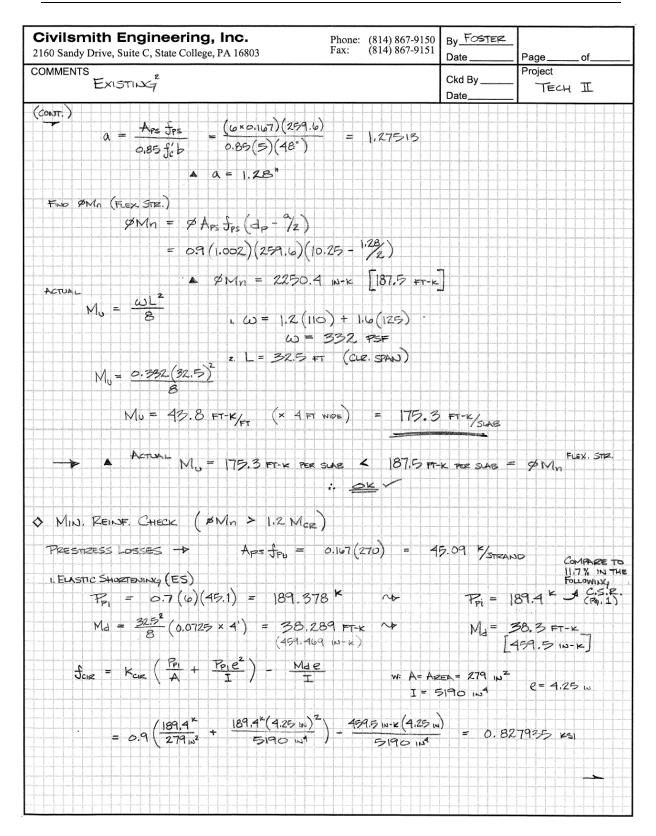


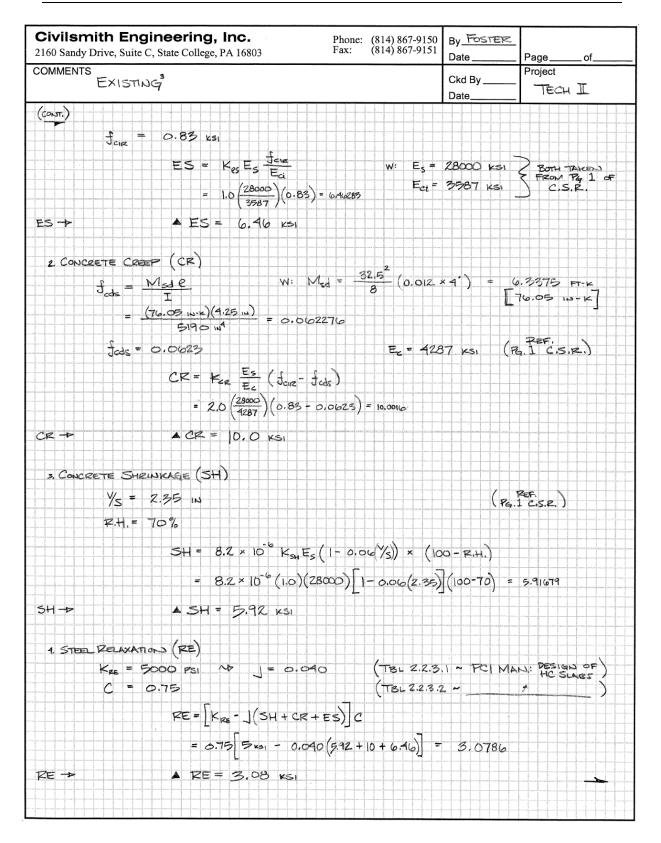
Eric M. Foster Structural Option Advisor: Dr. Linda M. Hanagan

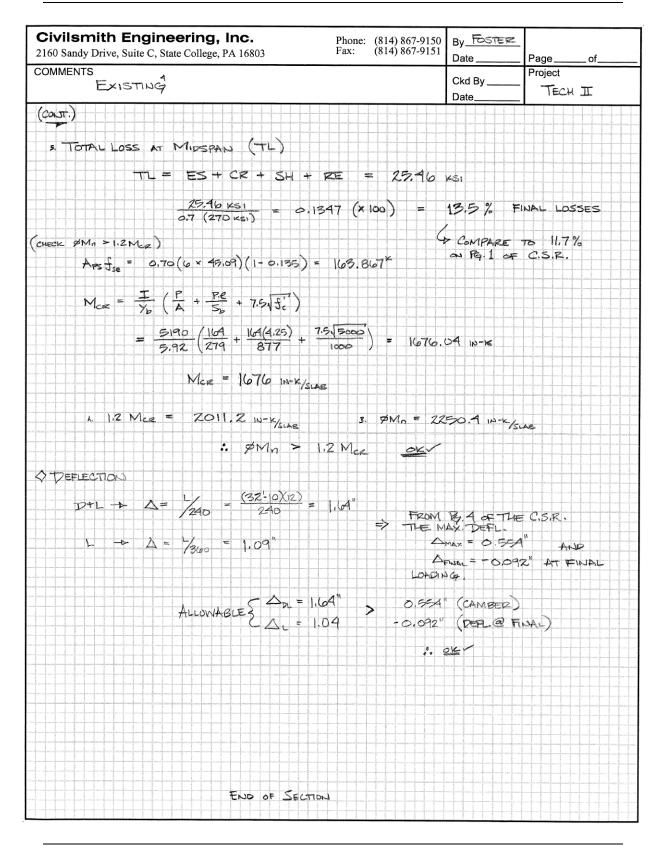


PAGE 29 OF 68


PAGE 30 OF 68




TECH REPORT II


APPENDIX B

(Calculations, Results, & References)

Summary	Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Soft Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank	ware, Inc
SUMMARY REPORT	
Design Code Used: ACI318-05	
CONCRETE MATERIAL PROPERTIES	
Precast Beam	Topping
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Wt = 150 lb/ft^3 f'c = 3.0 ksi Ec = 3320 ksi
Cement Content = 0 lb/yd^3 Air Content = 5.00 % Slump = 0.00 in Aggregate Mix = 0.40 (ratio fine to total aggregate) Aggregate Size = 0.00 in Curing Method = Moist Humidity = 70 % Basic Shrinkage Strain = 780E-6	Construction Schedule * Age at Transfer = 0.75 days Age at Erection = 40 days Age at Topping Placement = 50 days Age Topping is Composite = 53 days * for loss calculations only)
BEAM LAYOUT	
Beam is UNSHORED during topping placement and superimposed d	lead load.
Segment/Length Offset Section Identificat No From To Z Y Folder Sect ft ft in in	11 5
1 0.00 32.83 0.00 0.00 HollowCore	HC4'x12" 0.00 0.00 2.00 48.00
Total Beam Length = 32.83 ft, Left Support @ 0.17 ft, Righ	t Support @ 32.66 ft, Span = 32.49 ft
PRECAST SECTION PROPERTIES (NON-COMPOSITE) *Seg. AIYbSbNo. in^22 in^44 in in^33 1279.051905.92877	V/S bw width height in in in in
Landress and the second production of the second second	2.35 10.38 48.00 12.00
* These properties do not include the transformed area of an See the Transformed Section Properties text report for pro	y reinforcing or prestressing steel. perties that include the area of steel.
COMPOSITE SECTION PROPERTIES *	
Seg. Ac IC yb yt ytt Sb No. in ² in ⁴ in in in in ³	St Stt hc in^3 in^3 in
1 353.4 8158 7.41 4.59 6.59 110	1 1777 1238 14.00
 * These properties do not include the transformed area of an See the Transformed Section Properties text report for pro Note: yt & St refer to the top of the precast beam, and ytt 	pperties that include the area of steel.
PRESTRESSING STEEL TENDONS	
Prestressing Strand Details	
ID Qty Material Section x y Left ft in ft	set & Type * Tendon Jacking Force Right Area Pj %fpu ft in^2 kip
I 6 fpu=270 ksi SWS#1/2"SP 0.00 1.75 0.00 Es= 28000.0 ksi 32.83 1.75	B 0.00 B 1.002 189.4 0.70
notes: * Strand End Types: B - Fully Bonded, D - Debonded, C Prestressing steel is low relaxation strand. Calculated Losses: Initial = 3.0 %, Final = 11.7 Maximum Total Prestress Forces: Pj(jacking) = Pi(transfer) =	- FOMFARE TO 13.5%
Engineer: EMF File: HC12-in_2nd Floor_01.con 1	Company: Civilsmith Engineering, Inc. Wed Oct 29 14:55:24 2008

File: HC12-in_2nd Floor_01.con

Wed Oct 29 14:55:24 2008

TECH REPORT II

Summary Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank Pe(effective) = 167.3 kip @ x = 16.42 ft Prestressing Strand Transfer and Development Lengths ID Diameter End Debond Length fse fps Transfer Development in ft psi psi in in 1 LEFT 0.00 159286 264600 79.16 0.50 26.51 1 RIGHT 159286 0.50 0.00 264600 26.51 79.16 BEAM AND TOPPING SELF-WEIGHT Segment/Length Linear Weight То Beam From Topping No. ft ft kip/ft kip/ft 1 0.00 32.83 0.29 0,10 EXTERNALLY APPLIED LOADS Load Intensity (*) Offset (ft) Load Case Load Label Load Type Left Right Left Right Beam Weight D Addt'l Self-Wt. Line Load 0.03 0.00 32.83 0.03 SDL AT D Live Load L 12 PSF 125 PSF Line Load 0.05 0.05 0.00 32.83 Line Load 0.50 0.50 0.00 32.83 * point loads = kip, line loads = kip/ft, point moment/torsion = kipft, line torsion = kipft/ft Load Combinations Factored Combination 1 = 1.40D + 1.40F Factored Combination 2 = 1.20D + 1.60L + 0.50SRLr + 1.20F + 1.20T Factored Combination 3 = 1.20D + 0.50L* + 1.60SRLr Factored Combination 4 = 1.20D + 1.60SRLr + 0.80WE Factored Combination 4 = 1.20D + 1.60SRLF + 0.80WE Factored Combination 5 = 1.20D + 0.50L* + 0.50SRLr + 1.60WE Factored Combination 6 = 0.90D + 1.60WE * Load factor reduced from 1.0 to 0.5 for low live loading (garage, public assembly, < 100 lb/ft2) (The use of T is not yet implemented) SHEAR STIRRUPS Stirrup Stirrup Number of Legs Total Stirrup Area Stirrup Spacing Stirrup Interface From То Grade Size Stirrup Interface in^2 Stirrup Interface ft ft ksi in Beam Ties in^2 in in 0 0 0.00 32.83 60.0 0.00 0.00 0.00 0.00 TORSION PARAMETERS Seg. Torsion Parameters No. Aoh in^2 Ph in 1 0.00 0.00 Aoh is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. Ph is the perimeter of the area defined as Aoh. ANALYSIS RESULTS SUMMARY Total Unfactored Effects Total Factored Effects x (ft) Moment (kipft) Shear Moment Torsion Total (kip) (kipft) (kipft) Sustained 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.17 0.0 -0.2 0.0 0.0 22.2 17.7 0.17 0.0 0.0 0.0 0.0 46.1 22.4 64.8 0.0 3.42 82.0 39.7 115.2 0.0 6.67 13.3 9.92 107.6 52.2 8.9 151.3 0.0 Engineer: EMF Company: Civilsmith Engineering, Inc.

PAGE 38 OF 68

2

Summary Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank 13.17 123.0 59.6 4.4 172.9 0.0

16.42	128.1	62.1	0.0	180.1	0.0	
19.83	122.4	59.4	-4.7	172.1	0.0	
23.08	106.5	51.7	-9.1	149.8	0.0	
26.33	80.4	39.0	-13.5	113.1	0.0	
29.58	44.0	21.4	-18.0	61.9	0.0	
32.66	0.0	0.0	-22.2	0.0	0.0	
32.66	0.0	0.0	0.2	0.0	0.0	
32.83	0.0	0.0	0.0	0.0	0.0	

SUPPORT REACTIONS (kip)

Load Case	Infactored Supp Left	ort Reactions Right
Beam Weight	5.3	5.3
SDL BT	0.0	0.0
Topping Wgt	1.6	1.6
SDL AT	0.8	0.8
LL Sustain	0.0	0.0
Live Load	8.2	8.2
Roof Load	0.0	0.0
Fluid Wgt	0.0	0.0
VWind or EQ	0.0	0.0
Strain Load	0.0	0.0
Load Combo.	Left	Right
Sust. Total	7.7	7.7
Total	15.9	15.9
Factor Max.	22.4	22.4

CONCRETE STRESS RESULTS (+ve = compression, -ve = tension)

Location	x ft	Stress psi	Limit psi	Overs Not		s	
STRESSES AT TRANS	FFP					-	
Critical Compress							
Top of Beam	16.42	376	2450		0	\$	
Bottom of Beam	2.28	1297	2450		õ		
Doccom of Deam	2.20	1257	2450		0	-	Longitudinal Tensile Rebar Needed (in^2)
Critical Tension							Required Provided Additional
Top of Beam	2.12	-70	-444		0	0	Holderon Hackbonne
Bottom of Beam	0.00	2	-444		0		
STRESSES IN SERVI	CE					-	
Critical Compress	ion						
Top of Beam	16.42	1057	3000		0	8	
Bottom of Beam	2.28	907	3000		0	00	
Top of Topping	16.42	541	1800		0	ŝ	
Critical Tension							
Top of Beam	0.17	-16	-849	*	0	ŝ	Class U member - not cracked
Bottom of Beam	16.42	-165	-849	*	0	ŝ	Class U member - not cracked 7
Top of Topping	0.17	0	-657.	*	0	ŝ	
STRESSES IN SERVI		INED LOADS ON	LY)			-	
Critical Compress							
Top of Beam	16.42	613	2250		0	\$	
Bottom of Beam	2.28	1076	2250		0	olo	
* Bilinear deflec	tion calc	ulation used.					
Modulus of Ruptur	e,	fr =	-530 p	si			
Transfer Strength			1.9 k	si			
Transfer Strength	Specifie	d, f'ci =	3.5 k	si			
DISTRIBUTION OF F	LEXURAL S	TEEL & CRACKI	NG				
Beam not cracked	or crack	depth is less	than concr	ete co	ver.		
Engineer: EMF							Company: Civilsmith Engineering, Inc
File: HC12-in_2nd	Floor_01	.con		3			Wed Oct 29 14:55:24 200

Summary Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank

NET DEFLECTION ESTIMATE AT ALL STAGES

(-ve = deflection bollmans AI ADD STADES (-ve = deflection down, +ve = camber up) Deflection growth estimated by use of PCI suggested multipliers - see multiplier report Design Code Used: ACI318-05

		CYLARADAT	Deflecti	Change in Deflection DL growth LL Span/Deflection					
Location	Net @ *	Net @	Net @	Net DL	Net Total	DL growth	LL		
x	Transfer	Erection	Complete	@ Final	@ Final	+ LL **	alone	DL growth	LL
ft	in	in	in	in	in	in	in	+ LL **	alone
0.00	0.000	-0.013	-0.011	-0.009	-0.003	0.007	0.006	545	694
0.17	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0	0
3.42	0.135	0.231	0.185	0.151	0.040	-0.145	-0.110	2696	3538
6.67	0.222	0.388	0.301	0.225	0.017	-0.284	-0.208	1370	1870
MP 13.17	0.276	0.485	0.367	0.253	-0.033	-0.400	-0.285	975	1366
13.17	0.306	0.538	0.399	0.259	-0.076	-0.475	-0.334	821	1166
Les 16.42	0.315	0.554	0.409	0.259	-0.092	-0.501	-0.351	778	1110
19.83	0.305	0.536	0.398	0.259	-0.074	-0.472	-0.333	825	1172
23.08	0.274	0.482	0.364	0.252	-0.030	-0.395	-0.282	988	1381
26.33	0.219	0.382	0.297	0.223	0.019	-0.278	-0.204	1403	1911
29.58	0.130	0.221	0.178	0.145	0.040	-0.137	-0.105	2839	3717
32.66	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0	0
32.83	0.000	-0.013	-0.011	-0.009	-0.003	0.007	0.006	545	694

Span/Deflection Limits: DL growth + LL * = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs

* on temporary supports at transfer ** after completion, including placement of all DL

FLEXURAL DESIGN CHECK

Design Code Used: ACI318-05 Beta Used: for precast beam = 0.800 , for topping = 0.850 The maximum value for fps is limited to 0.98 fpu.

x ft	Factored Moment Mu kipft	Design Strength ØMn kipft	Minimum Strength 1.2Mcr kipft	Depth in Compression c in	Net Tensile Strain	Flexure Class	Ø	Notes & Warnings
0.00	0.0	0.1	58.5	0.03	1.2412	Tension	0.75	
0.17	0.0	-1.3	-44.0	0.07		Tension	0.75	
3.42	64.8	149.4	200.1	1.80		Tension	0.83	
6.67	115.2	222.1	198.0	2.47	0.0119	Tension	0.90	
9.92	151.3	222.1	196.5	2.47	0.0119	Tension	0.90	
13.17	172.9	222.1	195.6	2.47	0.0119	Tension	0.90	
16.42	180.1	222.1	195.3	2.47	0.0119	Tension	0.90	
19.83	172.1	222.1	195.6	2.47	0.0119	Tension	0.90	
23.08	149.8	222.1	196.5	2.47	0.0119	Tension	0.90	
26.33	113.1	220.0	198.1	2.47	0.0119	Tension	0.90	
29.58	61.9	145.8	200.2	1.76	0.0179	Tension	0.82	
32.66	0.0	-1.3	-44.0	0.07	0.0732	Tension	0.75	
32.83	0.0	0.1	58.5	0.03	1.2412	Tension	0.75	
Points of	Maximum and	Minimum Factor	red Moment					
16.42	180.1	222.1	195.3	2.47	0.0119	Tension	0.90	
0.17	0.0	-1.3	-44.0	0.07	0.0732	Tension	0.75	
Points of	Critical Mon	ment Design						
16.42	180.1	222.1	195.3	2.47	0.0119	Tension	0.90	
0.17	0.0	-1.3	-44.0	0.07	0.0732	Tension	0.75	

SHEAR AND TORSION DESIGN CHECK

Design Code Used: ACI318-05

Shear and	Torsion De Applied Shear	sign Forces Prestress Component	Concrete Strength	Stirrup * Strength	Shear Strength	Applied Torsion	Threshold Torsion	Notes & Warnings	
Engineer: File: HC12		.oor_01.con		4	C	Company: Civ		neering, Inc 14:55:24 2008	

Summary Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank

x ft	Vu kip	Vp kip	ØVc kip	ØVs kip	ØVn kip	Tu kipft	ØTcr/4 kipft	
0.00	0.0	0.0	-13.5	0.0	-13.5	0.0	15.4	
0.17	-0.2	0.0	-24.6	0.0	-24.6	0.0	16.5	
0.17	21.4	0.0	24.6	0.1	24.7	0.0	16.5	
3.42	17.7	0.0	36.4	0.0	36.4	0.0	26.6	
6.67	13.3	0.0	17.5	2.7	20.2	0.0	26.7	
9.92	8.9	0.0	13.5	2.8	16.2	0.0	26.8	
13.17	4.4	0.0	13.5	0.0	13.5	0.0	26.9	
16.42	0.0	0.0	13.5	0.0	13.5	0.0	26.9	
19.83	-4.7	0.0	-13.5	0.0	-13.5	0.0	26.9	
23.08	-9.1	0.0	-13.5	-2.8	-16.2	0.0	26.8	
26.33	-13.5	0.0	-18.0	-2.7	-20.7	0.0	26.7	
29.58	-18.0	0.0	-37.6	0.0	-37.6	0.0	26.6	
32.66	-21.4	0.0	-24.6	-0.1	-24.7	0.0	16.5	
32.66	0.2	0.0	24.6	0.0	24.6	0.0	16.5	
32.83	0.0	0.0	13.5	0.0	13.5	0.0	15.4	

* Stirrup resistance based on required stirrup area.

Г	ransvers	e Steel (Stin			G L 1	Grandana	Tong Tongi	on Steel, Al	Notes &	
		Required Sl	near Steel Torsion*	Stirrup Provided	Provided	Spacing Required	Total	Allowable	Warnings	
		Total (Av+2At)/s	At/s	Av+2At	s	s	Required	Reduction**	narninge	
	x ft	in ² /ft	in ² /ft	in ²	in	in	in^2	in^2		
-	0.00	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	0.17	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	0.17	0.00	0.00	N/A	N/A	10.50	0.00	0.00	2	
	3.42	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	6.67	0.06	0.00	N/A	N/A	10.50	0.00	0.00	2	
	9.92	0.06	0.00	N/A	N/A	10.50	0.00	0.00	2	
	13.17	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	16.42	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	19.83	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	23.08	0.06	0.00	N/A	N/A	10.50	0.00	0.00	2	
	26.33	0.06	0.00	N/A	N/A	10.50	0.00	0.00	2	
	29.58	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	32.66	0.00	0.00	N/A	N/A	10.50	0.00	0.00	2	
	32.66	0.00	0.00	N/A	N/A	10.50	0.00	0.00		
	32.83	0.00	0.00	N/A	N/A	10.50	0.00	0.00		

Notes & Warnings

2 - Note: Amount of shear steel required represents minimum requirements.
 * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery).
 ** Allowable reduction in the additional longitudinal steel in the compression portion of the section.

- 1	e Used: ACI Horizontal hear Force Vu kip	Hor. Shear Strength (no ties) kip	Required Ties Av/s in^2/ft	Tie Size Provided Av in^2	Spacing Required s in	Spacing Provided s in	Hor. Shear Strength ØVnh kip	Notes & Warnings
0.00	0.0	34.0	0.00	0.00	0.00	0.00	34.0	3
0.17	-0.2	-34.0	0.00	0.00	0.00	0.00	-34.0	3
0.17	21.4	34.0	0.00	0.00	0.00	0.00	34.0	3
3.42	17.7	34.0	0.00	0.00	0.00	0.00	34.0	3
6.67	13.3	34.0	0.00	0.00	0.00	0.00	34.0	3
9.92	8.9	34.0	0.00	0.00	0.00	0.00	34.0	3
13.17	4.4	34.0	0.00	0.00	0.00	0.00	34.0	3
16.42	0.0	34.0	0.00	0.00	0.00	0.00	34.0	3
19.83	-4.7	-34.0	0.00	0.00	0.00	0.00	-34.0	3
23.08	-9.1	-34.0	0.00	0.00	0.00	0.00	-34.0	3
26.33	-13.5	-34.0	0.00	0.00	0.00	0.00	-34.0	3
29.58	-18.0	-34.0	0.00	0.00	0.00	0.00	-34.0	3
32.66	-21.4	-34.0	0.00	0.00	0.00	0.00	-34.0	3
32.66	0.2	34.0	0.00	0.00	0.00	0.00	34.0	3
32.83	0.0	34.0	0.00	0.00	0.00	0.00	34.0	3
es & Wa	rnings No Ties Rec							

PAGE 41 OF 68

Summary Report

Concise Beam (TM), Version 4.46f, (c) 2006 Black Mint Software, Inc Licensed to: 4054021211, Civilsmith Engineering - OK Project: Applied Research Laboratory V Problem: 2nd Floor 12" HC Plank

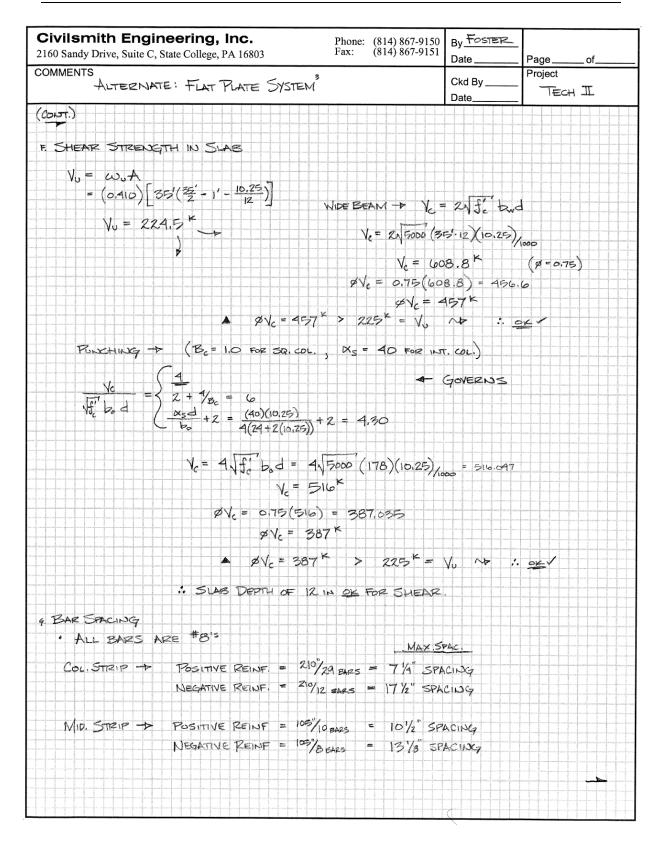
* Shear resistance based on tie area provided.

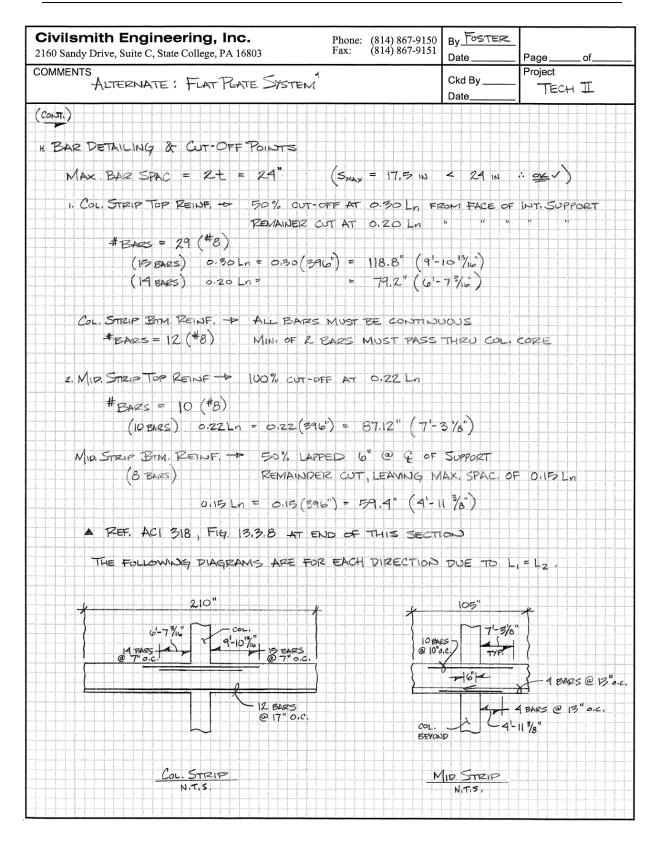
HORIZONTAL INTERFACE SHEAR TRANSFER CHECK - BY MOMENT DEVELOPMENT REGION

Region	of x ft	Beam	Shear Length lv ft	Horizontal Shear Force Fh kip	Hor. Shear Resistance - No Ties kip	Total Tie * Area Req'd Acs in^2	Total Area Provided Acs in^2	Maximum Spacing s in	Notes & Warnings
0.00 0.09 16.42 32.66 32.66	to to to	0.17 16.42 32.66 32.66 32.83	0.17 16.33 16.25 0.00 0.17	0.0 204.5 204.5 0.0 0.0		No Ties Requi No Ties Requi No Ties Requi No Ties Requi No Ties Requi	ired ired		

* Required ties should be distributed in proportion to distribution of shear force (or stirrups).

MATERIAL PROPERTIES PRESTRESSING STEEL


	Seven-Wire Strand, f _{pu} = 270 ksi									
Nominal Diameter, in.	³ ⁄8	7/16	1/2	1⁄2 Special ^a	9⁄16	3⁄5				
Area, sq in.	0.085	0.115	0.153	0.167	0.192	0.217				
Weight, plf	0.29	0.40	0.52	0.53	0.65	0.74				
0.7f _{pu} A _{ps} , kips	16.1	21.7	28.9	31.6	36.3	41.0				
0.75f _{pu} A _{ps} , kips	17.2	23.3	31.0	33.8	38.9	43.0				
0.8f _{pu} A _{ps} , kips	18.4	24.8	33.0	36.1	41.5	46.9				
f _{pu} A _{ps} , kips	23.0	31.1	41.3	45.1	51.8	58.6				

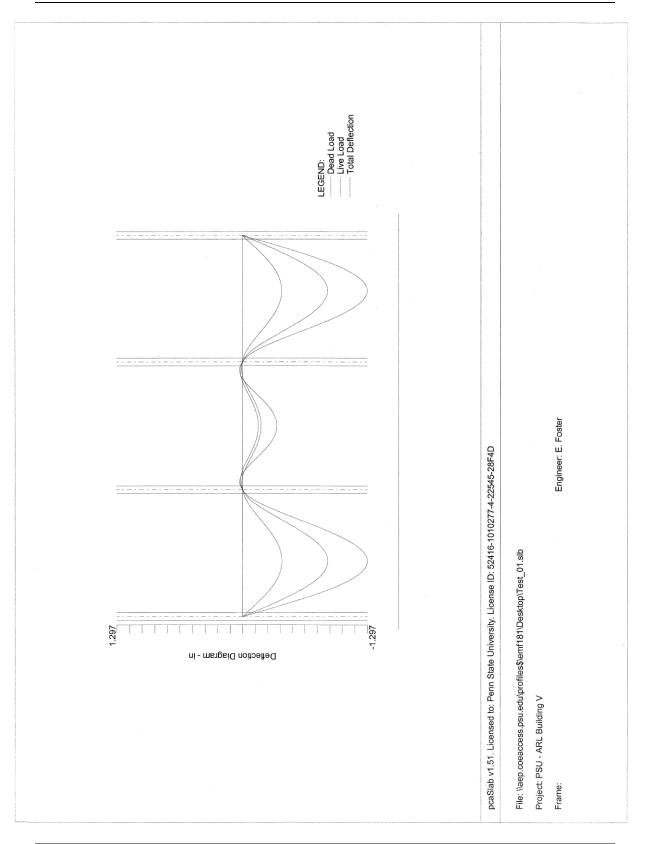

Design Aid 11.2.3 Properties and Design Strengths of Prestressing Strand and Wire

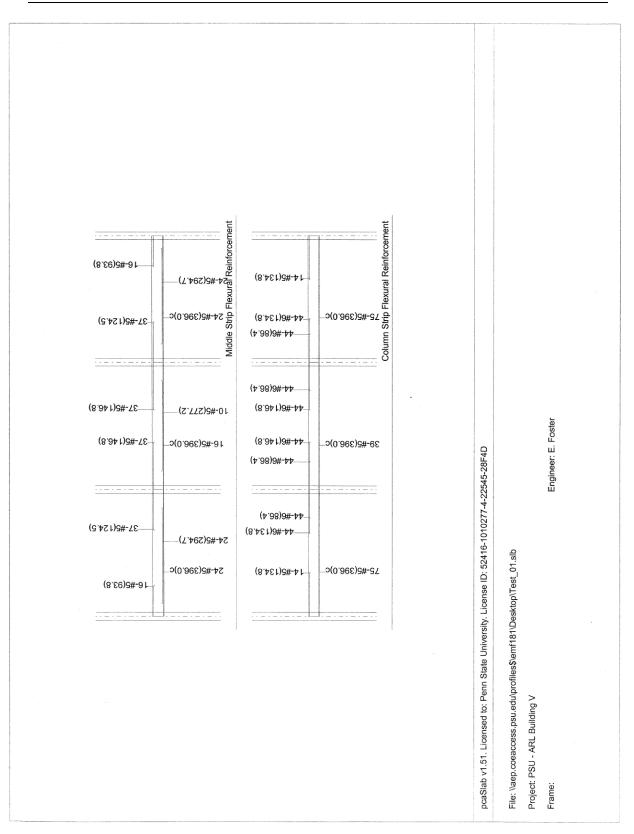
6

Civilsmith Engineering 2160 Sandy Drive, Suite C, State Colleg	-	Phone: (814) 867-9150 Fax: (814) 867-9151	_,	
	c, 1 A 10005		Date	Page of
COMMENTS ALTERNATE: FL	- RI SUSTER	A	Ckd By	Project
	AT FLATE JUSTER		Date	TECH I
REF. AC1 318-05				
a na fan a fan An fan fan a fa	FLAT PLATE SY	ISTEM		
35' 1	- NO BEAM - NO DROP PANE	1.5		
	- NO COLUMN (
TYP. 25-1				
BAY 35	24" × 24" COL			
	fc = 5000 PSI	(SLAB) L	$1 = L_2 = 31$	5. 1 . 1
	$J_c = 5000 \text{ ps}_1$ $J_y = 60000 \text{ ps}_1$	(STEEL)		
DESIGN TYP INTERIOR	PANEL FOR	2NP FLOOR OF	ARL + BUIL	DING V
LL = 25 PSF			· · · · · · · · · · · · · · · · · · ·	an a
A.INITIAL SLAB THICKEDESS	(ACI 9,5.3.2)			
TBL 9,5(C) ~ MIN. 51	AB THK. (t) W/0 1	NTERIOR BEAMS		
$f_{11} = (00000) R_{11}$				
	$\xi t \ge l_{133}$	W: In=	35 - 24	= 33' (396 IN)
INT. PANEL		391,11		
		$\pm 396''_{33}$		
		+ - 17	" (SIM. T	ORIGINAL
5. TOTAL STATIC MOMENT (LAMID TA	Simir 1	° 12' HC /
$\omega_{0} = 1.2 (DEAD) + 1$		DEAD	LIVE	
= 1.2(176) + 1.6	(125) 58	1FWT = 150 PSF ($t = 12"$)	200 FL = 12	IS PSF
fix fi Certaine				
$\omega_0 = 410 \text{ psf}$	nambana kana kana kana kana kana kana kana	111= 25 PSF		
$M_{0} = \frac{\omega_{0}L_{2}L_{n}^{2}}{8}$		IOMENTS AT CRIT		11
₩10 - <u>8</u>				
(0.410)(35)(33)		$M_{U}^{-} = O, 65 M_{0}$	= 1264.1	FT-K
		$M_{\rm U}^{+} = 0.35 M_{\rm O}$	= 6827 F	T-K
Mo = 1953.4 FT-				
			· · · · · · · · · · · · · · · · · · ·	and a second
D. LATERAL DISTRIBUTION O	F MOMENTS (X=	O BC NO BEAM	s)	
% TO (1) STRIP ->	75% NT 8	40 % Mt		
% TO COL, STIZIP -> (INT, SPANS)		₩¥ /8 IM[0		
and a second				
COL, STRIP -> MU=	0.75(1269.7) = 95	$2.3 \text{ FT-K} M_0^T = 0$.60(683.7) =	= 410.2. FT-K
		μ		
MID. STRIP -> MU =	0.25 (1269.7) = 31	7.4 FT-K M1 = 0	.40 (683.7) =	273.5 FT-K
	frantise for a set of the set of		1981 And 1997 AN AND DESCRIPTION AND ADDRESS OF ADDRESS	and the second

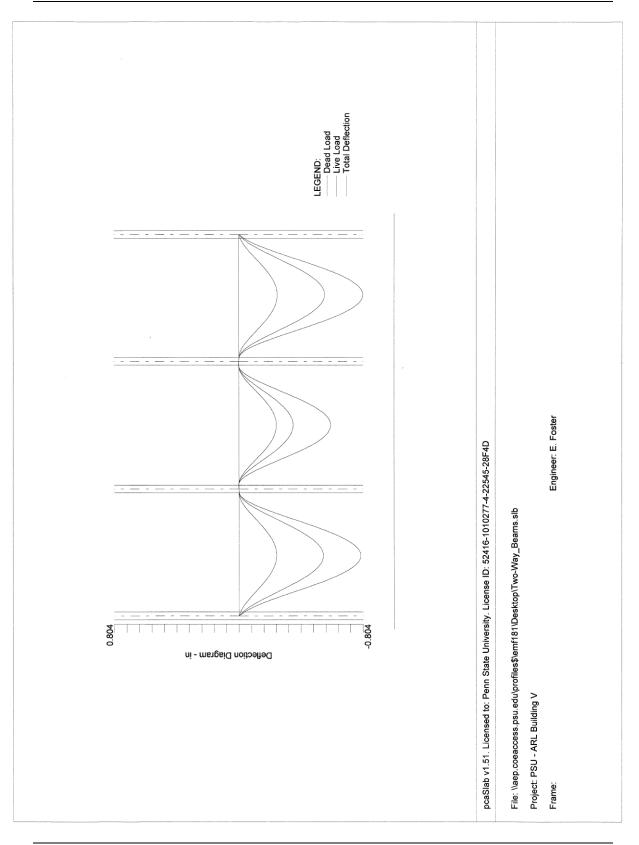
Civilsmith Enginee 2160 Sandy Drive, Suite C, State			Phone: (8 Fax: (8	ne: (814) 867-9150 By FOSTER (814) 867-9151 Date Page of.				
COMMENTS ALTERNATE:	FLAT PA	ATE Sys	rem ²		Ckd By Date	Project TECH I		
(00037.)								
E FLEXURAL REINF. F	DR SLAF	3						
		Co4	.Step +		Mid.Strap +			
1. MOMERST (MU)	FT-K	952.3	410.2	317.4				
2. STRIP WIDTH (b)	N	210	210	105	109	>		
3. EFF. DEPTH (deff) a,c	116	10.25	10.25	10.25	10.20	5		
4. Mn = Mu/p	Pt-K	058.1	455.8	352.7				
9. 72 = Mn/bd2 ×12000		576	248	384				
6. (A)			0.004268		22 0.005	775		
$7. A_s = -pbd$		22.3	9.2	7.2	6.2			
8. As, MIN = 0.0018bt			4.5 041		ov 23			
$\gamma = As/A$ c		29	12	10	8		×	
9. $N = A_{S/A_{BAR}}^{c}$ 10. $N_{MIN} = \frac{STEIPWIDTH}{24}$		9	4	5	5		^	
Min 22				* ************************************				
a. deff = 12"-c b. p -b (REF.				CTON)				
R = 576 P		558 ~ 583 ~	0.0100	> / =	0.01036			
R = 248 P	X			× =	0.004268			
R = 384 R	1				0.006722			
R = 331 P	51				0.00575			
c. Assume #8	3 BARS	(A _{bar} = (⊃;79 (N²)					
★→ N GOVERN	JS (AL	4						

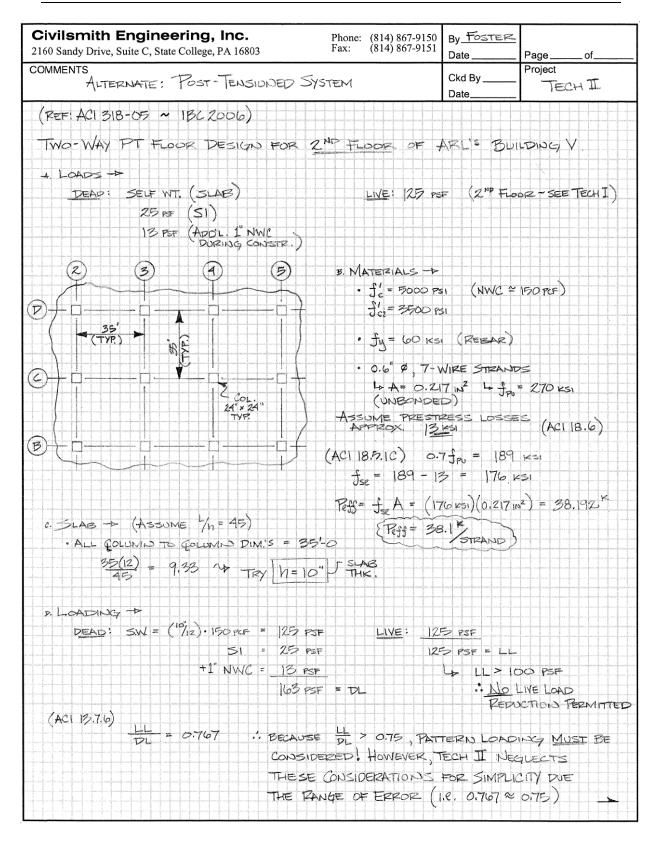
		***		1969) (




		$f_y = f_y$	40,000 psi			$f_y = 6$	0,000 psi	
			f' _c , psi			f' _c ,	psi	
ρ	3000	4000	5000	6000	3000	4000	5000	6000
0.0005	20	20	20	20	30	30	30	30
0.0010	40	40	40	40	59	59	60	60
0.0015	59	59	60	60	88	89	89	89
0.0020	. 79	79	79	79	117	118	118	119
0.0025	98	99	99	99	146	147	147	148
0.0030	117	118	118	119	174	175	176	177
0.0035	136	137	138	138	201	204	205	206
.0040	155	156	157	157	229	232	203	206
.0045	174	175	176	177	256	259	261	
0.0050	192	194	195	196	282	287	289	263 291
.0055	211	213	214					
0.0060	229	232	233	215 234	309	314	317	319
.0065	247	252			335	341	345	347
			252	253	360	368	372	375
.0070 .0075	265 282	268 287	271 289	272	385	394	399	403
.0075	282	287	289	291	410	420	426	430
.0080	300	305	308	310	435	446	453	457
.0085	317	323	326	329	459	472	479	485
.0090	335	341	345	347	483	497	506	511
.0095	352	359	363	366	506	522	532	538
.0100	369	376	381	384	529	547	558	565
.0105	385	394	399	403	552	572	583	591
.0110	402	412	417	421	575	596	609	617
.0115	419	429	435	439	597	620	634	643
.0120	435	446	453	457	618	644	659	669
.0125	451	463	471	476	640	667	684	695
.0130	467	480	488	494	661	691		
.0135	483	497	506	511	681		708	720
.0140	499	514	523 .	529	702	714	733	746
.0145	514	531	540	547	702	736 759	757	771
.0150	529	547	558	565	722	739	781 805	796 821
.0155	545	562						
	560	563	575	582	760	803	828	845
.0160		580 506	592	600		825	852	870
.0165	575	596 612	609	617 625		846	875	894
.0170	589	612	626	635		867	898	918
0175	604	628	642	652		888	920	942
0180	618	644	659	669		909	943	966
0185	633	660	676	686		929	965	989
0190	647	675	692	703		949	987	1013
.0195	661	691	708	720		969	1009	1036
.0200	675	706	725	737		988	1031	1059

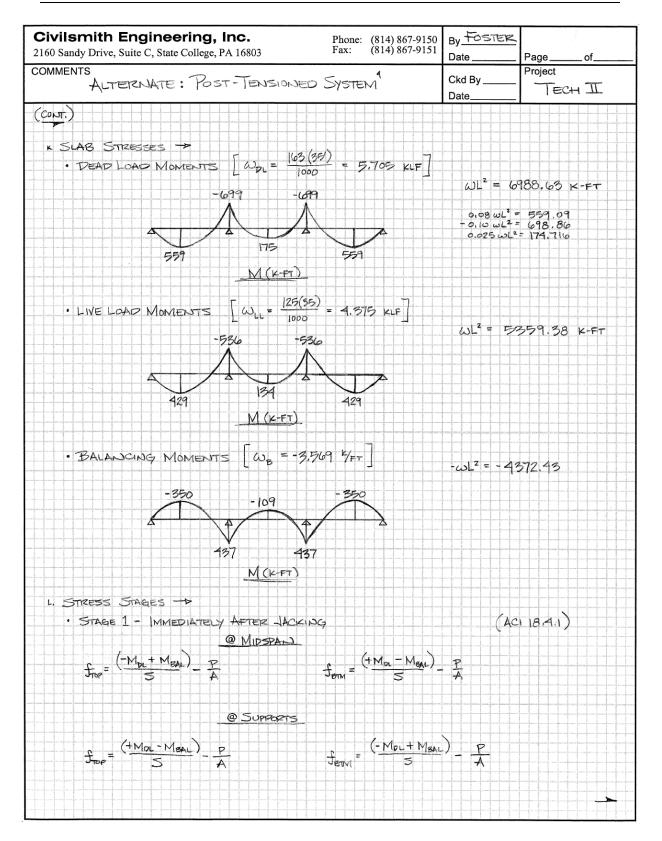
REF. ~ NILSON, DARWIN, DOLAN. DESIGN OF CONCRETE STRUCTURES. 13TH Ed.

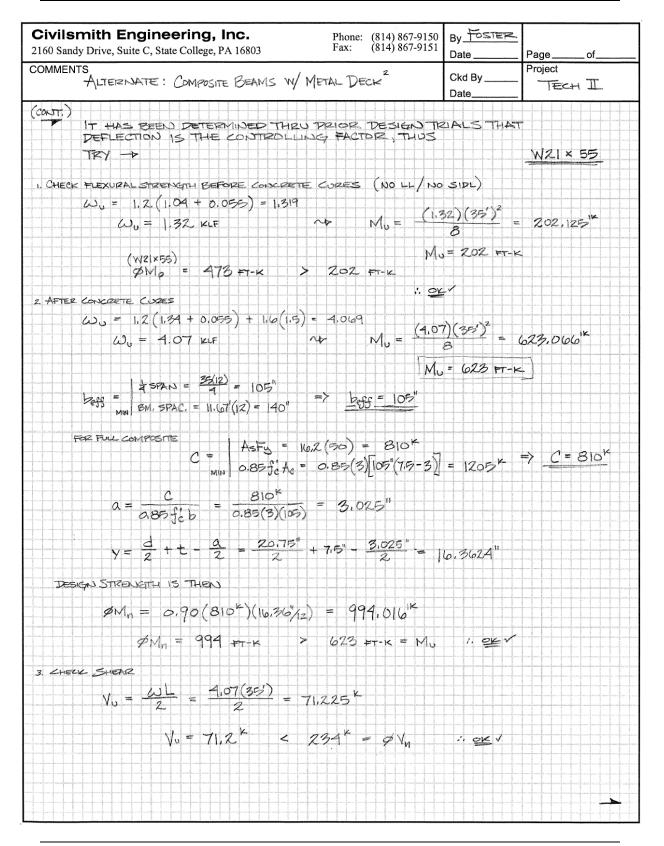

PAGE 48 OF 68



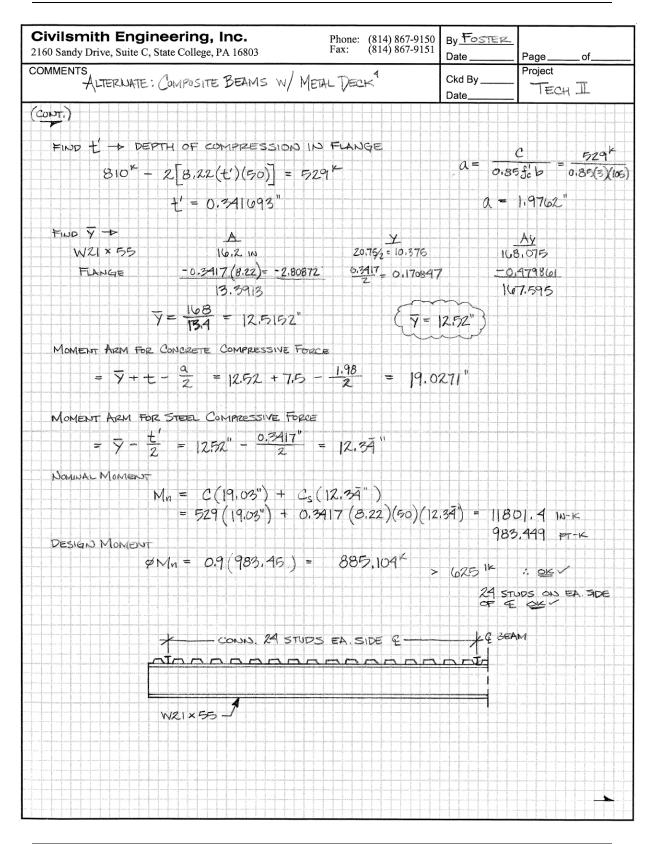
TECH REPORT II

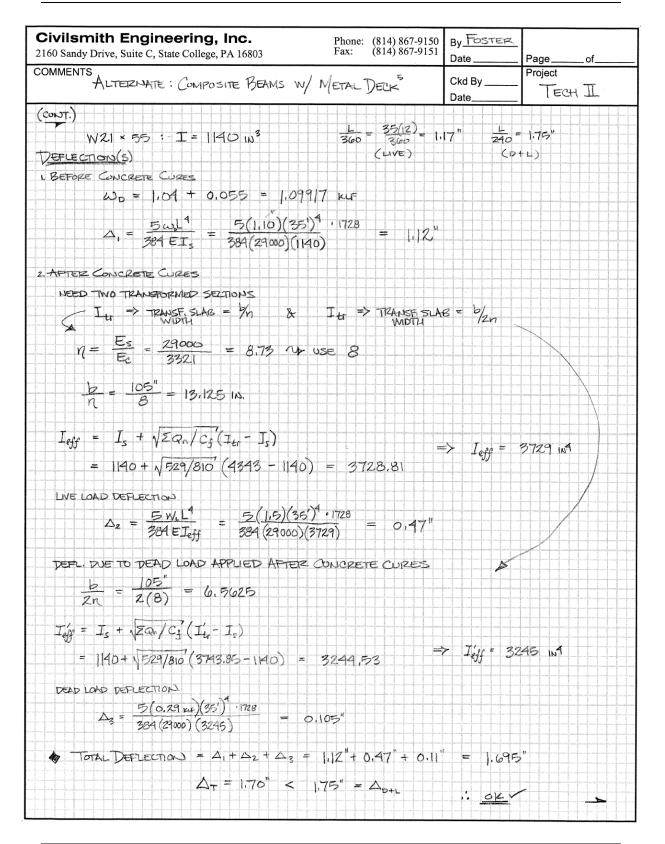
PAGE 49 OF 68

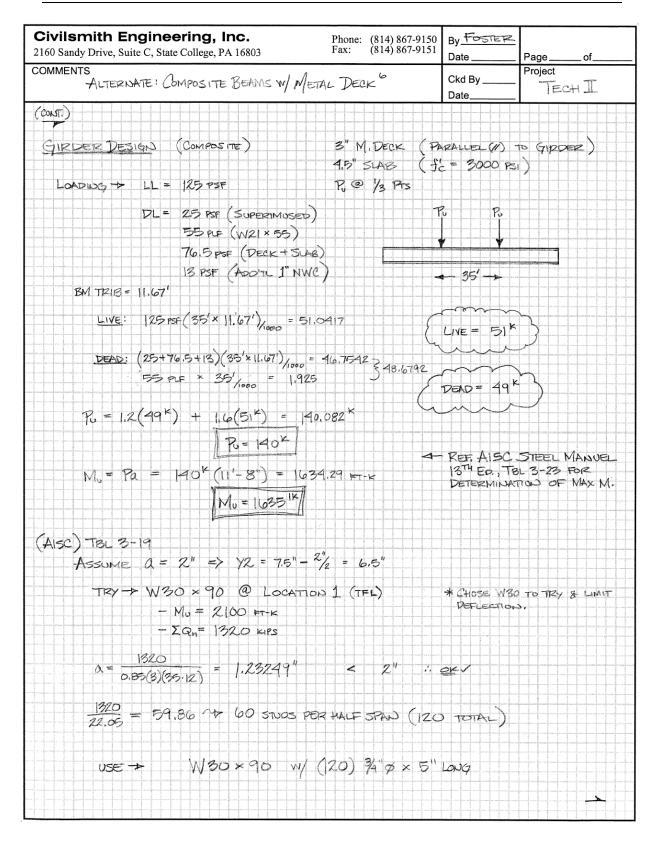


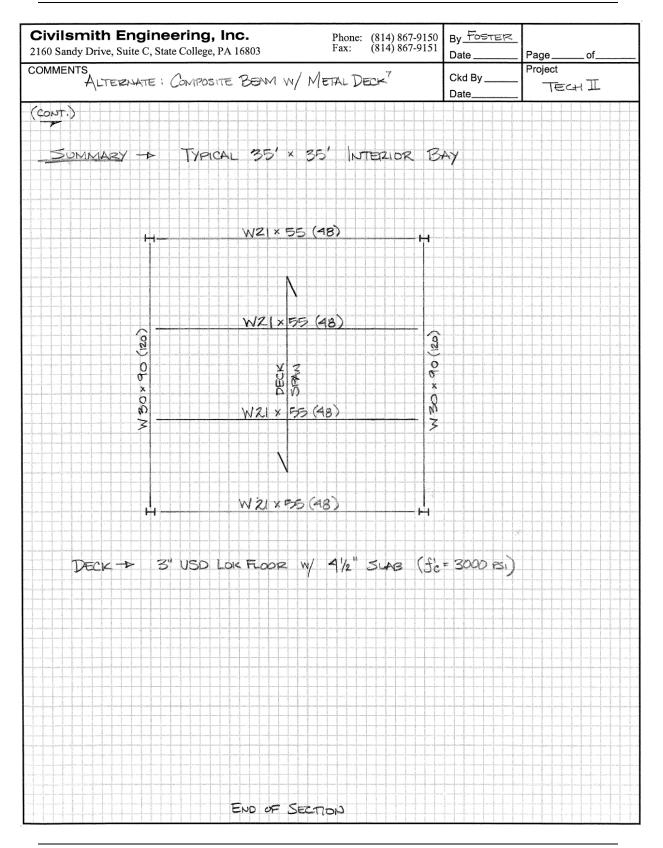

Civilsmith Engineering, Inc. Phone: (814) 867-9150 2160 Sandy Drive, Suite C, State College, PA 16803 Fax: (814) 867-9151	By Foster	Pageof
ALTERNATE: POST-TENSIONED SYSTEM	Ckd By Date	Project TECH I
(CUNT.) DESIGN OF INTERIOR FRAME (JAME IN BOTH DIRECTIONS E. SECTION PROPERTIES ->	5)	
· PER ACI 18.3.3: TWO-WAY SLARS ⇒ CLASS U · PER ACI 18.3.4: CLASS U => UNCRACKED (GROSS) SECTION		· · · · · · · · · · · · · · · · · · ·
$A = bh = 35'(12) \cdot (10'') = 4200 \text{ is}^2$ $S = \frac{bh^2}{6} = \frac{(420'')(10'')^2}{6} = 7000 \text{ is}^3$	A= 4200 S= 7000	2 w²
F. ALLOWARLE STRESSES -> C-COMPRES (ACI [8.3.3) CLASS U:		ENZION
1. AT JACKING (ACI 18.4.1) $f_{ci} = 3500 \text{ psi} \text{AF} C = 0.60 \text{ f}_{ci} = 2100 \text{ T} = 3\sqrt{3} \frac{1}{6} = 177 \text{ ps}$	2 PSI	
2. At SERVICE LOADS (ACI 184.2(a) & 18.3.3) $f'_c = 5000 \text{ rs}_1 \qquad 16 \qquad C = 0.45 f'_c = 2250$ $T^{\pm} 6 \sqrt{f'_c} = 429 \text{ p}$ (Rep ACI 18.12.4)		
AVG, PRECOMPRESSIOND LIMITS: [125 PSI = PA = 3 ASSUME LOAD BALANCE TARGET = 70% OF SLAB SELF WT.	200 PS1	
0.70 (125 psf) = 87.5 psf.		
ASSUME 2-HR FIRE RATING W/ CARBONATE AGGREGATE COVER = 3/4" MIN/11/2 MAX. (SEE 1BC 2006~(24.7)	
4. TENDON PROFILE -> • ASSUME PARABOLIC SHAPE: (PROVIDE MAX. DRAPE FO	SR LOAD BAL	ANCING)
AEND 2 CAINT	NA	
XZ A3 A4 TENDONS * ECCENTIZICITY (e) VARIES ALONG SPAN,	Δ5	

60 Sandy Drive, Suite C, State College, PA 16803	Fax: (8	814) 867-9151	Date	Page of
ALTERNATE : POST-TENSIONED	SYSTEM		Ckd By	Project TECH II
			Date	HECH LL
USING TENDONS PROFILE (PRE	CENT	ER OF GRAVITY		
LOCATIONS	DONS (CG) LOC	ATTON *	*-MEAS	DRED FROM
EXT. SUPPORT - ANCHOR (10/4)	5"		BTN2	of SLAB
NT, SUPPORT- TOP (10"- 3/1"- 0.1%)	8.95"		(5"+8.95")	1.8" = 5.175
NT. SPAN - BOTTON (34"+ """)	1.05	afno =	2 -	1.8 = 5.115
EXT. SPAN - BOTTOM (1/2+ awy)	1.8"	A ₁₀₇ =	8.95" - 1.05"	= 7,9"
H. FORCE REQUIRED TO BALANCE 70				
· LESS DRAPE IND EXT. SPAN US		V	OME TRUE.	2
ω _a = 87.5 psf × 35 f				= 3,06 K/FT
$\omega_{\rm sL} = \frac{8Fa}{L^2} \Rightarrow F_{\rm E} = 4$				
$\omega_{8,\pm}$ $z = 7$ t_{\pm} =	80 = t2	EXT. SPAN	DED TS C	ounteract u
(2 n)	\ ²			
$F_{E} = \frac{(3.00)(35)}{8(5.175)}$	/ = 1087.~ 1z)			<u>1088 kips</u>
I. / PRECOMPRESSION ALLONANCES -+				
· NUMBER TENDON'S REPD. FO	NR 1088K			
$\frac{1088 \text{ kips}}{38.1 \text{ KZ}} = 28.556$				
2001 TENDON			28 TENIDON	
· PACTUAL = 28(38.1) = 1066		Pie	= 1066K	
$\omega_{\mathrm{BL}} = \left(\frac{1000}{1088}\right) (3.00) = 3.00$	10 KFT	ېنې مېرې	31 ¹⁼ 3.0 ^K F	anteriori e anteriori e conserva e conserva E conserva e conserva e conserva e conserva
ACTUAL PC STRASS $P = \frac{1066}{4200 \text{ in}^2}$	1000 = 253.8			
	[2	5 = 254	≤ 3007	5. <u>ok</u> -1
J. V INTERIOR SPAN FORCE ->				
• $F_1 = \frac{3.06(35)^2}{8(7.9\frac{4}{12})} = 712.322$	K < 1066K			
• $\omega_{el} = \frac{8(1006^{k})(7.9^{\prime\prime}/12)}{(35^{\prime})^{2}} = 4.58$	33 %FT			
		BECAU	SE GREATER	THAN 100%,
$\frac{\omega_{\rm BL}}{\omega_{\rm DL}} = \frac{4.5835{\rm M/FT}}{0.125{\rm KSF}(35')}(\times100) =$	= 105% =	PURP	ASSUME	THAN 100%, E. FOR THE S REPORT I ENGINEERIN
	F	is Full	LOADING N	ID ADDUNIE
$\left(\frac{P_{eff}}{P_{eff}} = 10666 \right)$	<			FACILITY USE.

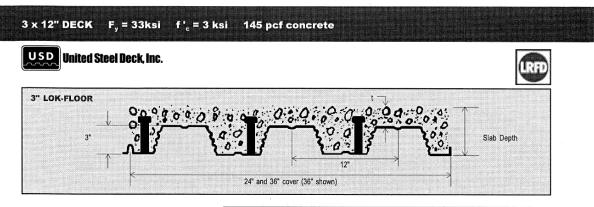

160 Sandy Drive, Suite C, State College	, 111 10005	Phone: (814) 867-9150 Fax: (814) 867-9151	Date	Page Project	. of
ALTERNATE: BST	- TENSIONED	System	Ckd By Date	TECH	Π
COUT,)					
· STAGE 2 - AT SET	EVICE LOADS		(AC)	833 & 18	3.42)
	@ MIDSPAN				
(-Mp, -M, +		(Matw	IL -MRAL)	P	
$f_{\text{Top}} = \begin{pmatrix} -M_{\text{PL}} - M_{\text{LL}} + \\ - & - & - \\ & - & - & - \\ & - & - & -$	BAL - F	JEIM = (Math	5	*	
	@ SUPPORTS				
(M-+M-	M				
STOP = (MpL+ML-	BALI - A	Jemn=	S S		
SUMMARY OF STRESSES :					
ana a manakan na kata ana ana ana ana ana ana ana ana ana					
STAGE 1:	MIDSPA				
• INT: SPAN -> 5-0=	-361 PSI	$\int_{BTM} = -141$	251		
• Ext. SPAN - JTUP	GIZ PSI	J _{BTM} = 104 P≤			
	SUPPOR	s.			
	= 195 FSI	JBTM = + 703 P	51		
		SAIM			
Stage 2:	MIDSPA	67			
· INT. SPAN > Frop	= - 597 psi	f = 89 ps			
· EXT. SPANJ -> JTOP	= -1348 PSI	SETM F_= = 840 PSI			
aan aa ahaa ahaa ahaa ahaa ahaa ahaa ah	****				
	_ SUPPOR				
a mura pana para para para para para para pa	= 1114 P51	form = -1622 ps			
terana perintera da la construcción de la construcción de la construcción de la construcción de la construcción Transferencia de la construcción de					
Allow : 51. C = 2100 PSI	>-367/-612	/-141 OKV	>-703	25-1	
TE 177 PS1	> 104 254	an a		NE	
	<u>M</u>				
52. C€ 2250 PSI	> -597/-134	8 OKY	>-1622	Q¥1	
T= 424 P31	> 89 01/	< 840 NG.)	(< 1141	NG	
* NOTE: BECAUSE STRE	SSES EXCEED	ALLOWABLE STRE	SSES, CAL	c's	
ABANDONED AND L					-
SHOULD BE CONSI					


Civilsmith Engineering, Inc. 2160 Sandy Drive, Suite C, State College, PA 16803	Phone: (814) 867-9150 Fax: (814) 867-9151	By <u>Foster</u> Date	Page of
COMMENTS ALTERNATE: COMPOSITE BEAM	S W METAL DECK	Ckd By Date	Project TECH II
(REF. AISC STEEL MANUEL, 13TH ED.)	TYPICAL INTERIOR B	AY DESIGN	(351×351)
× 35' ×	ASSUME -> UNSHORED		
х (яүт) 1	Je = 3000 psi of N.V. A992 STEEL BEAMS &		
	34"\$ × 5" STUDS (1	5=65451)	
	USING USD CATALOQUE SHE END OF THIS SECTION	ETS INCLUD	ED AT THE
IL DECK	-> 3" LOK FLOOP BY		US A
	4 /2 N.W.C. COVER Y		
	1/2 TOTAL SLAB TH		
	2-HR. FIRE RATING		
INTERMEDIATE SUPPORTS			
LOCATED AT 1/3 PTS. ON GIRDER.	=> MAX UNSHORED SPAN	2 = ,67 ₽	T. (3 SPAN)
3" LOK FLOOR 14 7.5" SLAB	DEPTH VA MS = 11.67'	(3.span)	
> SELECT	16 GAGE DECKING		
	-+ MS = 12.44' > 11.67		
BEAM DESIGN		2 PSF < 310 ·· @k	an a
2ND FLOOR LOADING ->	- 14502		
+ LIVE: 125 PSF × 11.67/1000	- 1.9782	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LL= 1.5 KLF
+ DEAD: 25 BF (SUPERIMPO			
76.5 PSF (DECK + S	US) Concrete during Constituct		
A A A A A A A A A A A A A A A A A A A		UN LEVELING	
	+ 0.060 KLF (BM.	SELF WH. A	SSUMED DIE
	1.39583 KLF	5 HIGH LOI	SSUMED DUE)
		{	DL= 1,4 KLF
FACTORED -> 1,2(1.4) + 1.6	(1.5) • W.		
	4.08 KLF ?		
		625 Ft-K	
$M_{0} = \frac{\omega L^{2}}{8} = \frac{(4.08 \text{ kur})(36)}{8}$	= 624.75 ·	VAP FI-K	




PAGE 57 OF 68

	Phone: (814) 867-9150 Fax: (814) 867-9151	By FSSIER Date	Pageof
ALTERNATE: COMPOSITE BEAMS W/ METAL	DECK ³	Ckd By Date	Project TECH II
(CONT.)			
SHEAR CONDECTORS			
$C = V_n = 810^{\times}$ MAX	$DIA = 2t_f =$	2(0.522") or	= 1,044"
REDUCTION PACTOR = $\frac{0.85}{NN_r} \left(\frac{W_r}{N_r}\right) \left[\left(\frac{H_s}{N_r}\right) \right]$			(34)
$V_{r} = 1.0$ (one stur $W_{r} = 6.0$ W (RIB)	июти)		
hr = 3,0 in (DECK) Hs = 5,0 in (Stud L	чегант)		
HS= 5,0 W (STUD L	enerth)		
$= \frac{0.85}{\sqrt{1.0^{7}}} \left(\frac{6.0}{3.0}\right) \left[\left(\frac{5.0}{3.0}\right) \right]$)+ ,0]		
= 1,13 > 1,0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1. No Rep	UCTION
0.54.54.5 = 0.504	4 2) 3 (2321)	= 72.047"	
$Q_n = 0.5 A_{sc} \sqrt{f_c' E_e} = 0.5 (0.4)$ $M_{NN} = A_{sc} F_U = 0.4418 (65) = 2$	28.71614		
Min		$Q_n = 22.0!$	X
# STUDS REQD. FOR 1/2 SPAN		$Q_n = \chi \chi_{\cdot 0}$	
$N_1 = \frac{V_h}{Q_h} = \frac{810^k}{22.05^k} = 36.73$	98 14 38 (76	STUDS FOR.	HALF BEAM
PARTIAL COMPOSITE MAY BE ADEQUATE D EXCESS FLEXURAL STRENGTH. (989 &			
TRY 48 STUDS TOTAL => NI=	<u>48</u> = 24		
$\Xi Q_n = 24(22.05^k) = 529.12$	8 ^K < 810	× Z ., C:	= V4 = 529 K
C < AsFy to Find P.N.A.			
$P_{yg} = b_{g} t_{f} F_{y} = (8.22)(0.522)(50)$	= 214,542		
$T - C_s = 810^k - 2(214.5^k) = 38$	0,916* < 52	9 K 50 TOP ENTIRE	FLANGE NOT LY IN COMPRESSION



PAGE 62 OF 68

The Deck Section Properties are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_b and ϕV_n , are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, ϕM_n .

The **Composite Properties** are a list of values for the composite slab. The **slab depth** is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕM_{nf} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). A is the area of concrete available to resist shear, in.2 per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. Sc is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. I_{av} is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The Iav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10° psi. ϕM_{no} is the factored resisting moment of the composite slab if there are <u>no studs</u> on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed $\phi 4(f_c)^{y_2}A_c$; pounds (per foot of width). The next three columns list the **maximum unshored spans** in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. \mathbf{A}_{wwf} is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

and the second	DECK PROPERTIES									
Gage	t	w	As	1	S _p	S,	R	¢۷,	studs	
22	0.0295	1.7	0.505	0.797	0.454	0.500	718	2190	0.41	
20	0.0358	2.1	0.610	0.993	0.583	0.620	1020	3220	0.50	
19	0.0418	2.4	0.710	1.158	0.708	0.726	1350	4310	0.58	
18	0.0474	28	0.810	1.324	0.832	0.832	1720	4880	0.66	
16	0.0598	(3.5)	1.020	1.666	1.045	1.045	2540	6130	0.83	

	No.						ITE PR	OPERTI		d de la la			
	Slab Depth		Ą	Vol.	W	Sc	lav	φM _{no}	φV _{nt}		nshored s		A
	C. Manhatta and the state of the	in.k	in²	ft3/ft2	psf	in ³	in ³	in.k	lbs.			3span	tine t
	5.50	52.80	37.6	0.333	48	1.33	10.1	37.18	5690	7.36	9.64	9.96	0.023
	6.00	59.89	42.0	0.375	54	1.52	13.0	42.70	6100	7.02	9.22	9.52	0.027
Q	6.25	63.43	44.3	0.396	57	1.62	14.6	45.55	6310	6.87	9.02	9.32	0.029
gage	6.50	66.97	46.6	0.417	60	1.73	16.4	48.44	6530	6.74	8.84	9.13	0.03
H.	7.00	74.05	51.3	0.458	66	1.94	20.3	54.34	6970	6.56	8.50	8.78	0.03
	7.25	77.59	53.8	0.479	69	2.04	22.5	57.34	7200	6.48	8.35	8.62	0.03
2	7.50	81.13	56.3	0.500	73	2.15	24.8	60.37	7430	6.40	8.13	8.47	0.04
R	8.00	88.22	61.3	0.542	79	2.37	29.9	66.51	7900	6.25	7.64	8.18	0.04
	8.25	91.76	63.9	0.563	82	2.48	32.7	69.61	8140	6.18	7.41	8.05	0.04
	8.50	95.30	66.6	0.583	85	2.59	35.7	72.73	8390	6.11	7.20	7.92	0.05
	5.50	62.81	37.6	0.333	48	1.58	10.8	44.32	6720	8.52	10.82	11.18	0.02
	6.00	71.37	42.0	0.375	54	1.81	13.8	50.89	7130	8.12	10.35	10.70	0.02
gage	6.25	75.65	44.3	0.396	57	1.94	15.5	54.28	7340	7.94	10.14	10.48	0.02
0	6.50	79.92	46.6	0.417	60	2.06	17.4	57.73	7560	7.78	9.94	10.27	0.03
E C	7.00	88.48	51.3	0.458	66	2.31	21.5	64.77	8000	7.58	9.57	9.89	0.03
•	7.25	92.76	53.8	0.479	69	2.44	23.8	68.35	8230	7.48	9.40	9.71	0.03
20	7.50	97.03	56.3	0.500	73	2.57	26.2	71.97	8460	7.39	9.24		0.04
N	8.00	105.59	61.3	0.542	79	2.83	31.6	79.32	8930	7.21	8.94	9.23	0.04
	8.25	109.87	63.9	0.563	82	2.96	34.6	83.03	9170	7.13	8.80	9.09	0.04
5- i - i	8.50	114.15	66.6	0.583	85	3.09	37.8	86.77	9420	7.05	8.66	8.95	0.05
1.1.1	5.50	72.04	37.6	0.333	48	1.81	11.4	50.82	7000	9.53	11.74	12.13	0.02
	6.00	82.00	42.0	0.375	54	2.08	14.6	58.38	7820	9.07	11.24	11.61	0.02
0	6.25	86.97	44.3	0.396	57	2.22	16.3	62.28	8240	8.87	11.01	11.38	0.02
5	6.50	91.95	46.6	0.417	60	2.36	18.3	66.25	8650	8.69	10.80	11.16	0.03
8	7.00	101.91	51.3	0.458	66	2.65	22.6	74.37	9090	8.46	10.40	10.75	0.03
5	7.25	106.89	53.8	0.479	69	2.80	25.0	78.51	9320	8.35	10.22	10.56	0.03
6	7.50	111.87	56.3	0.500	73	2.95	27.5	82.69	9550	8.24	10.04	10.38	0.04
-	8.00	121.83	61.3	0.542	79	3.25	33.2	91.18	10020	8.04	9.72	10.05	0.04
	8.25	126.81	63.9	0.563	82	3.40	36.3	95.48	10260	7.95	9.57	9.89	0.04
	8.50	131.78	66.6	0.583	85	3.56	39.6	99.80	10510	7.86	9.43	9.74	0.05
	5.50	80.96	37.6	0.333	48	2.04	11.9	57.20	7000	10.44	12.55	12.97	0.02
	6.00	92.32	42.0	0.375	54	2.34	15.2	65.72	7820	9.94	12.02	12.42	0.02
đ	6.25	98.00	44.3	0.396	57	2.50	17.1	70.12	8240	9.71	11.78	12.17	0.02
Đ,	6.50	103.68	46.6	0.417	60	2.66	19.1	74.61	8680	9.51	11.55	11.94	0.02
5	7.00	115.04	51.3	0.458	66	2.99	23.6	83.80	9560	9.25	11.13	11.50	0.03
gage	7.25	120.72	53.8	0.479	69	3.15	26.1	88.48	9890	9.13	10.94	11.30	0.03
8	7.50	126.40	56.3	0.500	73	3.32	28.8	93.22	10120	9.02	10.94	-11:10	0.03
4	8.00	137.76	61.3	0.500	79	3.67	34.7	102.84	10590	8.80	10.75	10.75	0.04
-	8.25	143.44	63.9	0.542	82	3.84	37.9	102.04	10830	8.69	10.41	10.75	0.04
	8.50	149.12	66.6	0.583	85	4.01	41.3	112.61	11080	8.59	10.25	10.55	0.04
	5.50	80.96	37.6	0.333	48	2.50	13.0	57.20	7000	11.85	14.04	14.51	0.03
1	6.00 6.25	92.32	42.0 44.3	0.375	54 57	2.88	16.6	65.72	7820	11.27 11.01	13.45	13.90	0.02
ž		98.00				3.07	18.6	70.12	8240		13.18	13.62	
lage	6.50	103.68	46.6	0.417	60	3.27	20.8	74.61	8680	10.78	12.93	13.36	0.03
5	7.00	115.04	51.3	0.458	66	3.67	25.7	83.80	9560	10.49	12.46	12.88	0.03
Sec. 33		120.72	53.8	0.479	69	3.88	28.4	88.48	10010	10.35	12.24		0.03
9	7.50	126.40	56.3	0.500	(73)	4.09	31.3	93.22	10480	10.22	12.04	12.44	0.04
-	0.00	137.76	61.3	0.542	79	4.52	37.6	102.84	11420	9.96	11.66	12.05	0.04
	8.25	143.44	63.9	0.563	82	4.73	41.1	107.71	11910	9.85	11.48	11.86	0.04
	8.50	149.12	66.6	0.583	85	4.95	44.8	112.61	12330	9.73	11.31	11.69	0.05

			3 x 12" DECK	F _y = 33ksi f	' _c = 3 ksi 145 pcf concrete
0 10 18 10	Depth in.k	9.00 9.50 10.00 10.50 11.00 11.50 1	12.00 12.50 13.00 13.50		LRFD
9 50 60 70 80 70 80 70 80 70 <th70< th=""> 70 70 7</th70<>	6.00 59.89 6.50 66.97 7.00 74.05 7.50 81.13 8.00 88.22 8.25 91.76	265 235 205 185 185 145 300 265 230 205 185 165 330 290 255 230 205 180 360 320 255 230 205 180 360 320 250 225 200 395 345 305 275 245 220 400 360 320 285 255 225	130 120 105 95 145 130 120 105 165 145 130 120 180 160 145 130 195 175 155 140	85 75 70 95 85 75 105 95 85 115 105 95 125 115 105	
10 10 <th< td=""><td>5.50 62.81</td><td>285 250 225 200 180 160 325 285 255 225 205 185 365 320 285 255 230 205</td><td>145 130 115 105 165 150 135 120 185 165 150 135</td><td>95 85 80 110 100 90 125 110 100</td><td>NO STUDS</td></th<>	5.50 62.81	285 250 225 200 180 160 325 285 255 225 205 185 365 320 285 255 230 205	145 130 115 105 165 150 135 120 185 165 150 135	95 85 80 110 100 90 125 110 100	NO STUDS
9 60 82 80 83 80 85 10 10 15 12 10 111 121 120 121 120 1	N 7.50 97.03 8.00 105.59 8.25 109.87 8.50 114.15	400 390 350 310 280 250 400 400 380 340 305 270 400 400 395 350 315 285 400 400 365 330 295	225 205 185 165 245 220 200 180 255 230 210 190 265 240 215 195	150 135 125 165 150 135 170 155 140 180 160 145	the LRFD equation $\phi M_n = (1.6L + 1.2D)^2/8$. Although there are other load combina-
V 8.5 15.6 400 400 400 303 305 275 280 225 256 190 100 9 5.5 8.59 300 400 400 300 300 202 225 226 101 110 400	6.00 82.00 6.50 91.95 7.00 101.91 7.50 111.87	380 335 300 265 240 215 400 375 335 300 270 245 400 400 375 335 300 270 400 400 365 330 270	195 175 160 145 220 200 180 165 245 220 200 180 270 240 220 200	130 120 110 150 135 125 165 150 135 180 165 150	will control most of the time. The equation assumes there is no negative bending reinforcement over the beams
90 1.33 1.44 90 400 90 200 28	8.25 126.81 8.50 131.78 5.50 80.96	400 400 400 400 375 335 400 400 400 300 350 350 380 335 300 270 240 215 400 385 340 305 275 250 400 400 385 345 310 280	305 275 250 225 315 285 260 235 195 180 160 145 225 205 185 170 255 230 210 190	205 190 170 215 195 180 135 120 110 155 140 130 175 160 145	single span. Two sets of values are shown; ¢M _M is used to calculate the uniform load when the full required number of studs is present, ¢M _n is
Bot 00 92.2 240 360 252 200 195 170 196 175 190 175 180 175 180 181 1	$\begin{array}{c} 7.50 & 126.40 \\ \hline 8.00 & 137.76 \\ \hline 8.25 & 143.44 \\ \hline 8.50 & 149.12 \end{array}$	400 400 400 400 380 340 400 400 400 400 375 400 400 400 400 390 400 400 400 400 390 400 400 400 400 400	280 255 230 210 310 280 255 235 340 305 280 255 350 320 290 265 365 330 300 275	195 175 160 210 195 180 230 210 195 240 220 200 250 230 210	are present. A straight line interpolation can be done if the average number of studs is between zero and the required
8.80 149.12 400 400 400 400 365 330 300 270 260 230 210 90 6.00 42.70 180 135 130 115 105 65 65 50 65 65 75 65 55 64 37 66 65 75 65 65 64	6.00 92.32 6.50 103.68 7.00 115.04 7.50 126.40 137.76	400 385 340 305 275 250 400 400 385 345 310 280 400 400 400 385 345 310 280 400 400 400 385 345 310 400 400 400 400 380 345 340 400 400 400 400 400 300 340 400	225 205 185 170 255 230 210 190 280 255 230 210 310 280 255 235 340 305 280 255	155 140 130 175 160 145 195 175 160 210 195 180 230 210 195	factored moment. The tabulated loads are checked for shear controlling (it seldom does), and also limited to a live
55.0 44.32 190 165 170 180 181 100 90 80 70 65 55 50 45 6.00 50.88 220 125 170 150 135 120 105 95 85 75 65 60 50 01	8.50 149.12 5.50 37.18 6.00 42.70 6.50 48.44 7.00 54.34 7.50 60.37 8.50 66.51 8.25 69.61	400 400 400 400 400 400 155 135 115 105 90 80 180 185 135 120 105 90 205 175 155 135 120 105 205 175 155 135 120 105 230 200 175 155 135 120 255 225 195 170 150 135 280 245 215 190 170 150 285 280 230 200 175 155	365 330 300 275 70 60 55 45 80 70 65 55 95 85 75 65 105 95 86 75 120 105 95 80 130 115 105 90 140 125 110 95	250 230 210 40 35 30 50 45 35 55 50 45 65 55 50 75 66 55 80 70 65 85 75 66	applied to the tabulated loads. This has been done to guard against equating large concentrated to uniform loads. Concentrated loads may require special analysis and design to take care of
4.50 66.77 800 335 226 265 226 226 226 226 226 226 226 226 226 226 100 160 160 180 <t< td=""><td>5.50 44.32 6.00 50.89 6.50 57.73 7.00 64.77 7.50 71.97</td><td>190 165 145 130 115 100 220 195 170 150 135 120 250 220 195 170 150 135 280 220 195 170 150 135 280 250 220 195 170 155 315 275 245 215 190 170 360 305 270 240 215 190 <td>90 80 70 65 105 95 85 75 120 105 95 85 135 120 110 95 150 135 120 110 170 150 135 120</td><td>55 50 45 65 60 50 75 70 60 85 75 70 95 85 75 110 95 85</td><td>by simply using a uniform load value. On the other hand, for any load combination the values provided by the composite properties can be used in the</td></td></t<>	5.50 44.32 6.00 50.89 6.50 57.73 7.00 64.77 7.50 71.97	190 165 145 130 115 100 220 195 170 150 135 120 250 220 195 170 150 135 280 220 195 170 150 135 280 250 220 195 170 155 315 275 245 215 190 170 360 305 270 240 215 190 <td>90 80 70 65 105 95 85 75 120 105 95 85 135 120 110 95 150 135 120 110 170 150 135 120</td> <td>55 50 45 65 60 50 75 70 60 85 75 70 95 85 75 110 95 85</td> <td>by simply using a uniform load value. On the other hand, for any load combination the values provided by the composite properties can be used in the</td>	90 80 70 65 105 95 85 75 120 105 95 85 135 120 110 95 150 135 120 110 170 150 135 120	55 50 45 65 60 50 75 70 60 85 75 70 95 85 75 110 95 85	by simply using a uniform load value. On the other hand, for any load combination the values provided by the composite properties can be used in the
8.25 95.48 400 380 335 300 265 240 215 190 170 155 140 125 115 8.50 98.00 400 386 380 336 300 226 220 280 186 143 135 120 5.50 57.20 255 225 200 180 160 140 125 115 105 90 85 75 70 6.00 65.72 246 233 225 225 220 115 105 90 85 75 70 700 83.80 380 335 295 265 235 210 190 170 155 140 130 100 90 90 90 90 175 150 140 130 115 105 100 90 90 170 150 140 130 115 105 100 100 90 170 150 140 130 115 105 103 115 100 10	8.50 86.77 5.50 50.82 6.00 58.38 6.50 66.25 7.00 74.37 7.50 82.69	380 335 295 265 235 210 225 195 175 155 135 120 280 225 200 180 160 160 140 295 260 230 205 180 160 330 290 260 230 205 185 337 370 325 290 235 205 185 370 325 290 255 230 205 185	185 165 150 135 110 95 85 80 125 115 100 90 145 130 115 105 165 145 130 120 185 165 150 135	120 105 95 70 65 55 80 75 65 95 85 75 105 95 85 120 110 95	amount is assumed for the table values. If welded wire fabric is not present,
7.00 83.80 336 295 265 210 190 170 155 140 125 115 105 7.00 83.22 400 370 330 285 225 232 215 190 175 156 140 130 115 8.00 102.84 400 400 370 330 285 225 232 215 195 175 160 145 130 8.25 107.71 400 400 380 336 345 310 275 250 225 200 185 175 160 145 130 8.50 112.61 400 400 380 326 230 228 200 185 175 160 145 5.50 57.20 255 225 200 185 110 190 175 160 145 6.00 65.27 226 235 210 190 170 150 135 125 110 100 90 77 <t< td=""><td>* 8.25 96.48 8.50 99.80 5.50 5720 6.00 6.572 6.00 6.572 6.50 74.61</td><td>400 380 335 300 265 240 400 335 350 310 280 250 255 225 200 180 160 140 295 260 230 205 185 165</td><td>215 190 170 155 225 200 180 165 125 115 105 90 145 130 120 105</td><td>140 125 115 145 135 120 85 75 70 95 85 80</td><td></td></t<>	* 8.25 96.48 8.50 99.80 5.50 5720 6.00 6.572 6.00 6.572 6.50 74.61	400 380 335 300 265 240 400 335 350 310 280 250 255 225 200 180 160 140 295 260 230 205 185 165	215 190 170 155 225 200 180 165 125 115 105 90 145 130 120 105	140 125 115 145 135 120 85 75 70 95 85 80	
6.00 65.72 295 260 230 205 185 145 130 120 105 95 85 80 6.50 74.61 335 295 265 235 210 190 170 150 135 125 110 100 90 7.00 83.80 335 295 265 235 210 190 170 155 140 125 115 105 7.50 93.22 400 375 330 295 225 235 215 190 175 155 140 130 115	7.00 83.80 7.50 93.22 8.00 102.84 8.25 107.71 8.50 112.51	380 335 295 265 235 210 400 375 330 295 265 235 400 400 370 330 295 265 400 400 370 330 295 265 400 400 385 345 310 275 400 400 360 320 290	190 170 155 140 215 190 175 155 235 215 195 175 250 225 200 185 260 235 210 190	125 115 105 140 130 115 160 145 130 165 150 135 175 160 145	
8.25 143.44 400 400 385 345 310 275 250 225 200 185 155 135 8.50 112.61 400 400 360 320 290 260 235 210 190 175 160 145	6.00 65.72 6.50 74.61 7.00 83.80 7.50 93.22 9 8.00 102.84 8.25 143.44	295 260 230 205 185 165 335 295 265 235 210 190 - 300 335 295 265 235 210 190 - 300 335 295 265 235 210 - <	145 130 120 105 170 150 135 125 190 170 155 140 215 190 175 155 235 215 195 175 250 225 200 185	95 85 80 110 100 90 125 115 105 140 130 115 160 145 130 165 150 135	n, n

TECH REPORT II

den N NS	'o Kaun	ys - C	omposito l	JOCK, COMUL
	U.L. DES. NO.	ER	CONCRETE COVER	USD PRODUCTS
1.	D216	S	21/2 NW,LW	BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLC
	D502	S	2 1/2 NW	BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLC
	D703	C	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D704 D706	C C	2 ½ NW 2 ½ NW	BL,BLC,LF15,LFC1
	D708	c	2 1/2 NW,LW	LF3,LFC3 BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D716	č	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*
	D722	C	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D726	С	2 1/2 NW,LW	LF15,LF2,LF3,NL *
	D727	С	2 1/2 NW	INV.BL,INV. NL *
	D730	С	2 1/2 NW	LF2,LFC2,LF3,LFC3,NL,NLC*
	D733	N	3 1/4 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D739	C	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC,AWC2,AWC3
	D742	C	2 ½ NW	LF15,LF2,LF3,NL*
	D743 D745	C	2 NW,LW	LF2,LFC2,LF3,LFC3*
	D746	C C	2 ½ NW,LW 2 ½ LW	LF2,LF3 * BL *
	D746		2 1/2 LW	LF2 *
	D750	C C C	2 1/2 NW,LW	BL,INV.BL,LF2,LF3,NL *
	D752	Č	2 ½ LW	BL,BLC,,LF2,LFC2,LF3,LFC3*
	D755	C	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D759	С	2 1/2 NW,LW	BL,LF15,LF2,LF3,NL*
	D760	C	2 1/2 NW,LW	LF2,LF3
	D767	С	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3
	D777	С	2 1/2 NW	LF15,LF2,LF3,NL*
	D772	C	2 1/2 NW,LW	LF2,LF3*
	D773	C	2 1/2 LW	BL*
	D774	C	21/2 LW	LF2*
- 10 C	D775	C	2 1/2 NW,LW	BL,INV. BL,LF2,LF3*
	D779 D822	C F	2 1/2 NW,LW	BL,LF15,LF2,LF3 LF2,LFC2,LF3,LFC3,NL,NLC*
-	D824	F	2 ½ NW,LW 2 ½ NW,LW	BL,BLC,LF15,LFC1
1. S. S. C.	D825	F	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D826	N	31/4 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
_	D831	F	2 1/2 NW.LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D832	F	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
N	D833	F	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*
	D837	F	2 1/2 NW	BL,BLC,LF15,LFC1*
	D840	N	3 1/4 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D847	F	2 1/2 NW,LW	LF2,LFC2,LF3,LFC3,NLC*
	D852	F	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*
	D858	F	2 ½ NW.LW	LF2,LFC2,LF3,LFC3,AWC2,AWC3*
	D859	F	2 NW,LW	LF2,LFC2,LF3,LFC3* LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*
	D860 D861	F	3 ¼ LW 2 ½ NW,LW	LF15,LF01,LF2,LF02,LF3,LF03,NL,NL0
	D862	F	2 1/2 LW	LF2.LF3
	D870	F	2 1/2 NW,LW	BL,BLC,LF15,LFC1,LF2,LFC21_F3_LFC3*
	D902	Ň	4 1/2 NW	BL,BLC,LF15,LFC1,LF2,LF02,LF3, FC3,NL,NLC
	D902	N	31/4 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D902	N	3½LW /	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D906	N	3 1⁄4 LW	NLC
	D907	N	3 ¼ LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3
	D908	N	3 ¼ LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D913	N	31/4LW	BL,LF15,LF2,LFC2,LF3,LFC3
a ta sana sa	D916	N	4 ½ NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D916	N N	3 ¼ LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D916 D918	N	3 ½ LW 4 ½ NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D918	N	31/4 LW	LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D918	N	31/2 LW	LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D919	N	31/4 LW	LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D919	N	31/2 LW	LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D920	N	31/4 LW	LF2,LFC2,LF3,LFC3
	D922	N	4 1/2 NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D922	N	3 1/2 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D923	N	4 1/2 NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D923	N	31/2 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	B005	N	4 1/2 NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D925			
	D925	N	3 1/2 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D925 D927	N N	3 ½ LW 4 ½ NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC B,BLC,LF2,LF2C,LF3,LF3C,NL,NLC
	D925	N	3 1/2 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC

U.L. Fire Ratings - Composite Deck, cent'd.

1. United Steel Deck, Inc., is not responsible for the adhesive ability of any spray applied fire protection material, or for any treatment, cleaning, or preparation of the deck surface required for adhesion of fire protection material.

2. The live loads shown in the composite tables may require a reduction if a U.L. fire rating is required. The worst load reduction for any design is 40%. Designs D733, D742, D825, D840, D860, D902, D907, D914, and D916 do not require a reduction if the sidelaps are attached at 24* o.c. as was used in the fire test.

3. Be sure to check the U.L. Fire Resistance Directory for all details of construction.

 Listings marked with * allow the use of phosphatized/painted noncellular deck except LF15. All D9xx listings allow the use of phosphatized/painted noncellular deck.

IN THE F.P. COLUMN: S = suspended ceiling F = fibrous fireproofing C = cementitious N = no fireproofing on the deck.

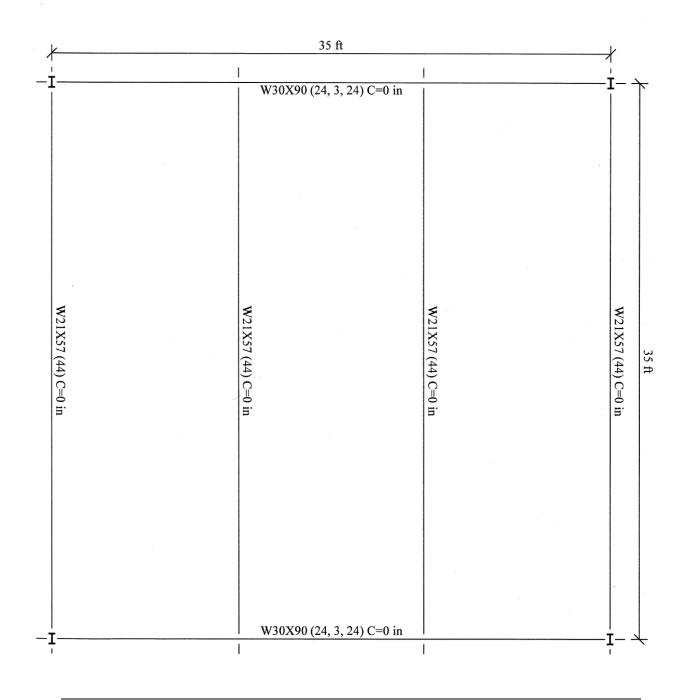
6. The concrete cover is measured from the top of the deck - add the deck depth to get the total slab thickness.

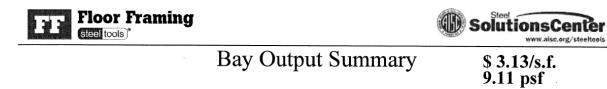
7. The BSA approvals for use in New York City are 620-76-SM (2 hours) and 621-76-SM (3 hours).

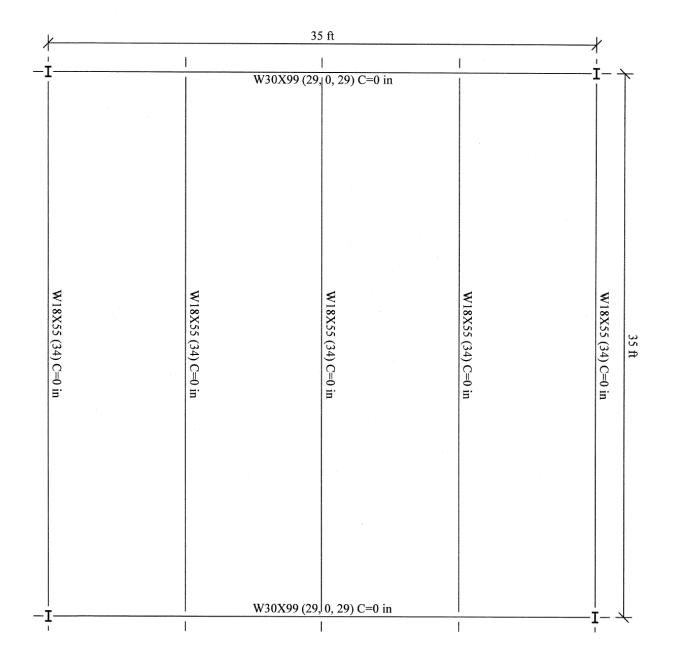
B. PRODUCT CODES: BL = B-LOK Collular INV. BL = inverted B-LOK LF15 = 1½" LOK floor LFC1 = 1½" LOK floor LFC2 = 2" LOK floor LFC3 = 3" LOK floor LFC3 = 3" LOK floor LFC3 = 3" LOK floor CFC3 = 3" LOK floor LFC3 = 3" LOK floor LFC

FIRE RATINGS, CONTD

48


in a sa cent, se




olutionsCen www.aisc.org/steeltools

Bay Output Summary

\$ 2.62/s.f. 7.46 psf

PAGE 67 OF 68

TECH REPORT II

End of Report